Chapter 39

Trouble-Shooting

Computers have an unbounded capacity to generate nonsense. Even when commands appear to
execute correctly, there is no guarantee that the results are accurate or meaningful. In this chapter
we will identify some of the many things that can go wrong when using the Humdrum Toolkit.
We will also present a number of suggestions and tips that will help you avoid potential problems.

Errors can arise from a number of sources including corrupt or error-prone input data, failure to
anticipate special circumstances or exceptions, improper processing, software bugs, and incautious
interpretations of results.

Encoding Errors

In the first instance, the accuracy of your results will depend on the accuracy of the input data.
Humdrum data may originate from a variety of sources. Users may encode their own materials, or
use existing data encoded by other individuals or available from institutional sources. Data quality
can be highly variable and there may be no easy way to determine the accuracy of a given data set.

It is important to spend time with a data set. Historical musicologists may spend a considerable
amount of time becoming familiar with a manuscript, and the same practice is recommended for
computational musicologists. Users should look at the data, listen to the data, compare the data to
published sources, and generally browse and peruse it. Most data errors are discovered while pro-
cessing the data — such as finding a suspicious major ninth melodic interval in a simple song.
Over time, more and more errors are eventually discovered and corrected. Unfortunately, there is
no magic flag that pops up to notify us when all errors have been eliminated from an encoded mu-
sical work. Only over time will the user gain confidence (or lose confidence) in a given data set.
In working with a file, we are far more apt to discover something is wrong with the data than to
learn that the data is a pristine encoding.

Errors can be magnified by the type of processing that is applied. For example, consider the case
of an encoded repertory that is known to have a pitch-related error rate of 1 percent. That is,
roughly 1 out of every 100 notes has an incorrect pitch representation. If we were to do an inven-
tory of pitches in this repertory, then our results would also exhibit a 1 percent error rate. For
many applications, such errors are not a problem.

However, consider what happens when we create an inventory of melodic intervals. One incorrect




Page 362 Trouble-Shooting

pitch will falsify two melodic intervals, hence the error rates for intervals is now 2 percent. Simi-
larly, if we are looking at four-note chords, a single wrong pitch will falsify an entire chord. So
we will have roughly a 4 percent error rate for chord identification. If we are investigating simple
chord progressions, a single wrong note will now disrupt the identification of two successive
chords. Thus we have an error rate of 8 percent for chord progressions.

There are two general lessons that can be drawn from these observations. The first lesson is obvi-
ous. Always try to use the best quality data that is available. When encoding your own data, aim
for total accuracy. The second lesson is more subtle. The more data that participates in identify-
ing some pattern, the greater the likelihood that a single data error will cause a problem. Whenev-
er possible try to restrict pattern searches to small or concise patterns.

Searching Tips

Many of the problems in computer-based musicology are evident when searching for some pattern.
In general, there are two types of searching errors: false hits and misses. A false hit occurs when
the search returns something that is not intended. A miss occurs when the search fails to catch an
instance that was intended to be a match. Unfortunately, efforts to reduce the number of false hits
often tend to increase the number of misses. Similarly, efforts to avoid misses often tend to in-
crease the number of false hits. Precision and caution are necessary.

Search failures can arise from five sources: (1) corrupt or inaccurate data, (2) failure to search all
of the intended data, (3) inaccurate or inappropriate definition of the search template, (4) failure to
understand how a given search tool or option operates, (5) failure on the part of the user to form a
clear idea of what is being sought. Let’s deal with each of these problems in turn.

(1) No search can produce accurate results if the data to be searched is inaccurate. You can
increase the accuracy of your search by choosing high quality data and preparing the files in an ap-
propriate manner.

Tips:
* Use the humdrum command to ensure that the input data conforms to the Humdrum syn-

tax.

* Use the humdrum -v command to determine whether the kind of data (signifiers) you are
interested in are truly present in all of the files to be searched.

* Use the proof command to ensure that any * *kexrn data is properly encoded.

* Visually inspect sample passages from the input data. Do not rely solely on the ms com-
mand; instead, look at the actual ASCII text data using the more command.

* Use the midi and perform commands to listen to sample passages; ensure that the data
makes sense.

» If you are uncertain of the quality of the data, try encoding a randomly selected subset and
then use the UNIX diff command to identify any differences between the original data and
the re-encoded data.



Trouble-Shooting Page 363

* Always read any release notes or README files that accompany the data.

* Use grep to search for warning and Nota Bene reference records (!!!RWG: and
! 1 1ONB:). These records may contain important editorial notes or warnings.

* Where appropriate, expand files to through-composed versions (using thru) before search-
ing. If more than one editorial version is present in a document, select the most appropri-
ate edition before processing.

* Create an inventory of all the types of data tokens present in an input. Inspect the invento-
ry list to determine whether any unexpected data are present.

» If necessary, eliminate certain types of data that might confound or interfere with your
search in some way. Use rid, grep -v, extract -i, sed and/or humsed to restrict the data.

(2) Ensure that you are searching all of the intended data:

» Use grep to search for titles, or composers, or opus numbers, etc., in order to ensure that
the file or files you are searching are the ones you want. Also check to ensure that you are
not searching materials that don’t belong in the input.

* Be wary of searching duplicated materials. Create inventories of titles, opus numbers, etc.,
and use uniq -d to identify unwanted duplicate copies of works or files.

e Use the Is -1 or we commands to determine the size of the search data. Does the amount of
input data seem unduly small or unduly large?

* Use the find command to search the system for other files that ought to be included in the
search task.

(3) One of the most common problems in searching arises from inaccurate or inappropriate
search templates.

Tips:\
* Be careful when formulating regular expressions. Read aloud the meaning of the regular
expression.
* Do not use extended regular expressions with the grep command. Use egrep instead.

« Ensure that you know which characters in your search template are meta-characters.

» Execute your command from a shell script file so that you don’t inadvertently make a typ-
ing error when entering the command.

¢ Maintain a command history file so that you have a permanent record of what you did. De-
pending on the system settings, the UNIX history command will display the past 100 (or
more) commands you have executed. Place this information in a permanent record file
as follows:

history > record
In addition, keep records of the precise regular expressions used for a given project. These

records will help you determine later whether you made a mistake. For added security,
print-out these files and glue them into a lab book.



Page 364 Trouble-Shooting

Create a test file containing different patterns, and test the ability of your regular expres-
sions to catch all cases. Included “lures” in your test — i.e., patterns that are close to what
you want, but should be rejected.

Use extra caution when using “not” logic. For example, the grep expression “not-A” (i.e.
["A1) will still match records containing the letter A as long as one non-A letter is present.
The commands

grep ["A]
and grep -v A

are not the same.

Compare outputs from a search that you know ought to increase the number of false hits.
Compare outputs from a search that you know ought to miss some sought patterns.

Translate the data to another representation and repeat the search using a different pattern
tailored to the new representation. The results should be identical.

Maintain a file containing regular expressions you have tested so you can re-use them in
later projects.

Visually inspect the ASCII output to ensure that the results are correct. Remember that vi-
sual inspection will only help you identify false hits. Visual inspection of the output will
not help you identify misses.

Use the midi and perform commands to proof-listen to your output. Again remember that
aural inspection will only help you identify false hits.

Ask whether the output makes sense. Given the amount of music searched, does it make
sense to find the number of occurrences found?

Try making a slight modification to your pattern template — a modification that you know
should produce a different result.

Look for converging evidence. Try two or three contrasting approaches to ensure that the
same answer arises for each approach. For example, try searching each part individually
using the extract command.

(4) Ensure that you understand how a given search tool or option operates.

Tips:

Remember that extended regular expressions require the use of egrep rather than grep.
Re-read the documentation to ensure that each software tool does what you think it does.

Refer to the examples given in the Humdrum Reference Manual in order to ensure that you
understand what a given option does.

Compare outputs using different options. Ensure that your selected option(s) is matching
the correct pattern.

Use the humver command to determine which version of the Humdrum Toolkit you are
using. Ensure that the documentation pertains to the correct version.



Trouble-Shooting Page 365

* Read the “Release Notes” for the software you use. Known software bugs are often report-
ed in such notes or in the documentation.

* Report discovered bugs to the software’s author. Even if the software is not revised, other
users should be informed of the problem.

(5) Perhaps the most onerous problems in pattern searching arises when the user fails to
have a clear understanding of what is being sought:

Tips:
* Think carefully about the search problem. What precisely are you looking for?
* Inspect the input to familiarize yourself with various contexts and possible variants.

¢ Check your search by carrying out a manual search of a random subset of the data.

Compared with manual research, computer searches are impressively fast. However, don’t let
yourself be caught-up by the speed of interaction. Take your time and reflect on the problem being
addressed. Formulate a search strategy away from the computer so that you have time to consider
possible confounds.

Pipeline Tips

Apart from searching tasks, most Humdrum processing involves two or more software tools linked
in a pipeline. Pipelines can obscure all sorts of processing errors.

Tips:

¢ Slowly assemble your pipeline by adding one software tool at a time. Visually inspect the
output following the addition of each process.

 Start with a small volume of input data. Once you have some confidence in your pipeline
use a different sample of input data. Again add one software tool at a time while inspecting
the results at each stage.

» Use the UNIX tee command to generate files at intermediate points in the processing. Use
the assemble command to align inputs and outputs at various stages in the processing.

¢ Execute your finalized pipeline from a shell script in order to avoid undetected typing er-
TOrS.

Reprise

In research-oriented activities, it is essential to exercise care when relying on computer-based
methods. Computers have an unbounded capacity to generate false results. Unfortunately, com-
puter outputs often seem deceptively authoritative. Take your time and develop a coherent strategy
for solving a particular problem. Test your materials and processes, and maintain good records of
what you have done. For critical tasks, always use two or more independent methods to ensure
that the results agree. In general, cultivate a skeptical attitude; wise users dre wary users.





