Chapter 36

Sound and Spectra

Music is a sonic art and no analytic toolkit would be complete with considering the representation
and manipulation of sound-related information. In this chapter we introduce some special-purpose
tools related to sound analysis, sound synthesis, and auditory perception. We have already en-
countered the **freq and **cents representations in Chapter 4. Much of this chapter will
center on the **spect representation. Three tools will be discussed in connection with
**spect: the spect, mask and sdiss commands. Spect accesses a database of analyzed instru-
ment tones to generate harmonic spectra for all notes for various orchestral instruments over their
complete ranges; mask can be used to modify a spectrum so that masked frequencies are attenuat-
ed in a manner that simulates human hearing; sdiss characterizes the degree of sensory dissonance
for arbitrary sonorities.

In addition, we will consider how Humdrum data can be used in conjunction with non-Humdrum
tools — such as digital sound editors, spectral analysis tools, and general signal processing soft-
ware, In particular, we will discuss the kern2cs command which generates score data for the pop-
ular Csound digital sound synthesis language.

The **spect Representation

A useful predefined sound-related representations that in Humdrum is the **spect scheme. The
**spect representation is used to represent successive acoustic spectra. Each data record repre-
sents a complete spectrum specified as a set of concurrent discrete frequency components. Each
frequency component in the spectrum is represented by a pair of numerical values separated by a
semicolon (;). These paired values encode the frequency and amplitude for a single spectral com-
ponent. Frequency values are positive values representing hertz. Amplitude values are positive
values representing the sound pressure level in decibels (dB SPL). Most sonorities consist of more
than one pure tone component, so * *spect data records typically encode a number of multiple
Stops.

Example 36.1 shows a sample document containing five spectra and a barline. The first data
record encodes an ambient spectrum (“silence”) represented by the upper-case letter ‘A’. Follow-
ing this are two spectra, each consisting of three spectral components: the first spectrum consists
of a 261 Hz tone at 47 dB SPL, as well as frequencies at 523 Hz and 785 Hz at 57 dB SPL and 35
dB SPL, respectively. Following the barline are two data records that represent two different
amalgamations of the preceding two three-component spectra. Notice that these two spectra are

Page 338 Sound and Spectra

identical; only the order of the components differs. In the CR**spect representation there is no
special requirement that the spectral components be encoded in any particular order. However, it
is often convenient to have the components assembled from left to right in ascending frequency or-
der. This can be achieved by passing an input through the spect command.

Example 36.1

**spect

A

261;47 523;57 785;35

330;57 659;35 989;27

=1

261;47 523;57 785;35 330;57 659;35 989;27
261;47 330;57 523;57 659;35 785;35 989;27

The SHARC Database and spect Command

More commonly, the spect command is used to generate a * *spect (acoustic spectral data) out-
put from a **semits score input. The spect command recognizes instrument tandem interpreta-
tions (e.g., *Iclarinet) and fetches a corresponding spectral data file (e.g., clarinet.spe). These files
are derived from the SHARC database of music instrument spectra created by Gregory Sandell
(1991). The file contains precise spectral measurements for recordings of the instrument playing
each note throughout the instrument’s range. Suppose that the input to spect contains the note F#5
for oboe (i.e., semits value 18). Then spect will retrieve the spectral information for a recording of
an oboe playing F#5 and add it to the composite spectrum for the particular sonority.

If more than one instrument is playing concurrently, then spect will generate an output record rep-
resenting the aggregate of all the spectral components generated by all of the sounding instru-
ments.

The SHARC database includes most orchestral instruments including piccolo, E-flat clarinet, con-
trabassoon, etc. The database also includes selected Medieval instruments such as the soprano
crumhorn and alto shawm. Timbres for string instruments are distinguished according to different
playing methods including arco, vibrato, non-vibrato, pizzicato, mute, and martello.

The mask Command

Masking is the tendency for sounds to obscure one another. In many cases, masking may cause a
sound to become completely inaudible. This means that the physical presence of a frequency
component in a spectrum does not necessarily mean that the component is audible to the listener.
Especially in the case of complex orchestral sonorities, many of the acoustically present compo-
nents are irrelevant for human listeners. A clear demonstration of this effect is evident in digital
sound recordings that have been processed using the JPEG compression scheme. JPEG-encoded
audio is indistinguishable from the original uncompressed audio, yet the scheme eliminates those
aspects of the sound which are masked. '

The Humdrum mask command implements a common masking algorithm. It accepts as input any

Sound and Spectra Page 339

**spect data, and for each sonority modifies the spectrum so that masked frequencies are atten-
uated accordingly. So-called “forward” and “backward” masking are not taken into account in this
utlity. No options are provided, and the command is invoked as follows:

mask <inputfile> > <outputfile>

Both the output and input to the mask command are **spect representations. A tandem inter-
pretation (*masked is added to the output to indicate that the sonorities already reflect the influ-
ence of masking. Some sound utilities (such as the sdiss command) already take into account the
effects of masking, and so an input containing the *masked interpretation will cause an error to
be generated. Similarly, the mask command itself will generate an error if the input sonorities
have already been modified using the mask command.

The sdiss Command

A great deal of research has been carried out over the centuries concerning the nature of conso-
nance and dissonance. This complex subject remains something of an enigma. The perception of
consonance or dissonance is known to be affected by a number of factors, including past musical
experience and cultural milieu. Perceptions of dissonance are even known to be influenced by the
personality of the listener.

Research by Donald Greenwood, Reiner Plomp, Wim Levelt, and others has established that one
aspect of dissonance perception is related to the physiology of the ear. This aspect of dissonance
is referred to as low-level or sensory dissonance.

The sdiss command implements a measurement method for sensory dissonance described by
Kameoka and Kuriyagawa (1969a/b). (The Humdrum sdiss command itself was written by Keith
Mashinter.) The sdiss command characterizes the degree of sensory dissonance for successive
vertical sonorities or acoustical moments. The command accepts as input one or more * *spect
spines and produces a single **sdiss spine as output. For each **spect data record, sdiss
produces a single numerical value representing the aggregate sensory dissonance. The greater the
output value, the greater the dissonance.

Example 36.2 illustrates some sample inputs and outputs for sdiss. The left-most spine provides
double-stops for **kern data for violin. The middle spine provides corresponding **spect
data using the spect command. The right-most spine shows the result of passing the **spect
data through the sdiss command.

Example 36.2

**kern **gpect **sdiss
*Ivioln *Ivioln *Ivioln
4c 4de

4G 44

4f 4g

de 4g

* _ * *

Page 340 Sound and Spectra

Note that sensory dissonance is known to be influenced by the number of complex tones in the
sonority. That is, three-note sonorities are virtually always more dissonant than three-note sonori-
ties, etc. However, it is known that increasing the number of notes in a chord can sometimes re-
duce the perceived dissonance. For example, the dyad of a major seventh generally sounds more
dissonant than the major-major-seventh (four-note) chord. Consequently, it is problematic to com-
pare sensory dissonance values for sonorities consisting of different numbers of complex tones.
Further problems with the Kameoka and Kuriyagawa measurement method are described in Mash-
inter (1995).

Connecting Humdrum with Csound — the kern2¢s Command

Apart from generating and processing acoustic spectra, it is often convenient to be able to listen to
the data. Generating sounds from descriptions of acoustic spectra cannot be done using MIDI syn-
thesizers. The sounds can be heard only by doing direct computer sound synthesis using an audio-
rate digital-to-analog converter. A number of popular computer sound synthesis languages exist,
such as Csound developed by Barry Vercoe (1993). Most of these languages are inspired by the
Music 5 language developed by Max Mathews (1969).

Typically, these languages divide the task of sound synthesis into two representations called the
score and the orchestra. The orchestra is an executable program, whereas the score is a set of
note- or event-related data that is “performed” by the orchestra. Typically, the score consists of a
series of note-records where each data record defines several attributes for a single note. Common
attributes include the frequency (or pitch), amplitude, duration, onset time, attack/decay envelope,
spectral content, etc. Example 36.3 shows a sample Csound score corresponding to the opening
measures of a Mozart clarinet trio.

Example 36.3 W.A. Mozart Clarinet Quinete.

’

W.A. Mozart,

Second trio from Clarinet Quintet

£1 0 512 10 5 3 1

t0 96;

’

’

il.
il.
il.
il.
i1.
il.
il.
i1.
.01
il.

i1

’

i2.
i2.
i2.

G

i3.
i3.
i3.

’

i4.
i4.
i4.

inst

01
01
01
01
01
01
01
01

01

Instrument

01
01
01

Instrument

01
01
01

Instrument

01
01
01

Instrument #1

Sound and Spectra

three harmonics in waveform table

tempo of 96 beats per minute

time duration slur pitch vol stac

0

Ui b WWN R o

.000
.500
.000
.500
.000
.000
.500
.000
.500
.000

#2

2.
3.
5.

000
000
000

#3

2.
3.
5.

000
000
000

#4

2.
3.
5.

000
000
000

0.
.500
.500
.500
.000
.500
.500
.500
.500
.000

P OOCOOCORrr o oo

e

[

500

.000
.000
.000

.000
.000
.000

.000
.000
.000

N W WwwwwwwwpR

[B e

o

oy
W W W WYWWo WL

©

oo

.00
.04
.07
.04
.00
.07
.04
.02
.05
.09

.09
.09
.09

.04
.04
.06

.01
.01
.11

0.

o O

o

[elelelNoNoNeNoNoNe)
NRNDNDNDNNDDDNDNND

2

NN

\S]

o

oY

e T S S S S Gy S EF R
cCoo0oo0o0O0OoOO0OO0O O

o o

.0
.0t

measure

; measure

; measure

; Imeasure

; Imeasure

Page 341

Csound is able to generate traditional 16-bit digital audio output. It can also be used to generate
AIFF files (audio information file format) for greater portability. Csound provides several other
utilities for sound analysis, including Fourier analysis and linear predictive coding.

Page 342 Sound and Spectra

Sound Analysis

Humdrum does not provide any sound analysis tools per se. As we noted, Csound provides utili-
ties for Fourier analysis and linear predictive coding. A wealth of software exists for sound analy-
sis, loudness estimation, mixing, sound card input/output, CD audio input/output, and other sound-
related applications. (See Tranter, 1996 for a sampling of such multimedia applications.) Other
analysis methods are available through general-purpose signal analysis software such as matlab,
mathematica, and maple. Custom software has also been written by Humdrum users, such as Kyle
Dawkins Humdrum synchronization of CD audio disks.

Sound synthesis and analysis software has a rapid rate of development. Users should consult re-
cent audio and multi-media resources for up-to-date information.

Reprise

In this chapter we have seen that Humdrum score-related data can be transformed into spectral in-
formation using the spect command. This allows us to reconstitute a score as a sequence of
sonorous spectra — which might be used for studies in timbre or orchestration. The mask tool
can be used to revise a spectral description so that it reflects how listeners hear rather than the ac-
tual acoustical information present. The sdiss command can be used to characterize successive
spectra in terms of the estimated sensory dissonance.

We have also seen that Humdrum data can be connected to other sound-related software, such as
Csound. Since Humdrum data consists of simple ASCII text, it is generally easy to write filters
that allow the data to be imported to a wide variety of existing sound analysis and synthesis soft-
ware.

