Chapter 31

Repertories and Links

In initiating a research project, we often begin by selecting a suitable repertory for study. A com-
mon approach is to focus on a particular composer, period, style, or culture. For example, a re-
searcher might focus on 17th century canons, or on Beethoven’s compositions prior to Opus 20, or
on Ojibway songs transcribed in the 1900s. Depending on the research task, the user may wish to
locate works that conform to highly complex criteria — such as solo Baroque flute works written
in compound meters, or slow Russian symphonic movements that don’t include any wind instru-
ments and are written in minor keys.

In this chapter, we discuss how to search entire file-systems for Humdrum scores that conform to
user-specified criteria. With large musical databases, automated methods for locating specific

repertories become important. As we will see, in most cases, one or two commands are all that is
necessary to assemble a repertory list of works conforming to complex selection criteria.

The find Command

The UNIX find command traverses through a file hierarchy, and finds all files that match certain
conditions. The find command takes the following syntax:

find <PATH> <OPTIONS> <ACTIONS>

The PATH is a directory from which the search commences. All files in the specified directory are
examined including all files in the subdirectories, sub-subdirectories, and so on.

The path

/

means the “root” directory containing all files on a computer system. Even single-user systems are
apt to have several thousand files subsumed under the root directory.

The path

/scores

Repertoires and Links Page 301

means all files under the scores directory, whereas
/scores/bach

means all files under the scores/bach directory. The period character:

tells find to commence searching from the current directory.

Since find searches all files under the given path, its operation may be quite slow when there are
thousands of files to search. It’s wise to restrict the search by choosing a reasonable starting point.
For example, specifying the path /scores/bach/chorales may save a great deal of time
compared with the path /scores. Although we won’t discuss them in this book, the find com-
mand provides a number of options that help to restrict the depth of searches or otherwise “prune”
the search. When first trying find it’s a good idea to limit the searches to small segments of the
file system.

When searching through the specific PATH, find is able to carry out a wide variety of possible
tests on each file. One simple action is to test whether the file-name conforms to a given regular
expression. Consider, for example, the goal of identifying all files representing pitch-class (* *pc)
information. The Humdrum convention is to identify these files by adding the .pc extension to
the filename — such as opus24.pc. The following find command will traverse through the
/scores directory (and all sub-directories) searching for files that contain the pc file extension:

find /scores -name *.pc

The above command uses the -name option followed by the appropriate regular expression. This
command is unusual in that it has no explicit action. In such cases, the implied action is to print or
display the name of all files whose names match the regular expression.

Note that regular expressions may be literal strings. This means we can locate a specific named
file. For example, the following command will locate all files named f indme:

find / -name findme

An example of an explicit ACTION might be to delete files conforming to a particular criterion.
For example, the following command searches the /scores path for files whose names contain
the . tmp extension. Any matching file is then deleted using the UNIX rm command:

find /scores -name *.tmp -exec rm "{}" ";

This command illustrates a number of features of the find command. The search begins from the
path /scores. The option -name *.tmp identifies the search condition. The -exec flag
identifies the action as that of executing a command. The arguments between ~exec and the se-
mi-colon are treated as the command to be executed. Each time a file is found with the . tmp ex-
tension, the —exec action is executed. The paired curly braces {} have a special significance to
find. The braces are replaced by the filename found to match the regular expression. For exam-
ple, if the first file found is named xyz . tmp the braces will be replaced by the string xyz . tmp.

Page 302 Repertoires and Links

The quotation marks around the braces and around the semi-colon are necessary in order to pre-
vent the UNIX shell interpreter from substituting inappropriate information before passing the
command line to rm.

Note that the -name option defaults to filenames only; it does not apply to directory names. The
above command is equivalent to the more explicit form:

n 1

find /scores -type f -name *.tmp -exec rm "{}" ";

The -type option can be used to match regular files (f), directories (d), or network files (n). By
way of example, the following command deletes all directories whose names have the . tmp ex-
tension.

n.n
’

find /scores -type d -name *.tmp -exec rmdir "{}"

Content Searching

For most music research applications, we are interested in identifying files on the basis of their
contents. That is, we’d like to know what’s inside the file before we take any action.

The grep command is especially useful in determining whether certain items of information are
present in a file. For example, the following command identifies all files in the path /scores
that contain passages in 7/8 meter:

noon
7

find /scores -type f -exec grep -1 '*M7/8' "{}"

Recall that the -1 option for grep causes the output to consist only of names of files that contain the
sought regular expression. Note that the -type f option has been specified in order to ensure that
the grep command is only executed for files.

The structure of the above command can be used to search for all sorts of pertinent musical infor-
mation. For example, recall that the * IC tandem interpretation is used to encode instrument class-
es such as strings, voice, percussion, etc. The following command searches all files in the path
scores and generates a list of those files that encode scores containing one or more brass instru-

ments:
find scores -type f -exec grep -1 ’‘*ICbras’ "{}" ";"

The following command identifies all files in the path /scores, that contain passages in the key
of C major:

find /scores -type f -exec grep -1 "*C:’ "{}" ;"

The following command identifies all files in the path /scores, that contain passages in any mi-
nor key:

find /scores -type f -exec grep -1 "*[a-g][#-1*:" "{}" ";"

Repertoires and Links Page 303

Humdrum reference records are ideal targets for such searches since reference records encode in-
formation such as the composer’s name, composer’s dates, title of work, date of composition,
movement number, instrumentation, meter classification, and so on. For example, the following
command identifies all files in the path /scores that are composed by Franck:

find /scores -type f -exec grep -1 ’‘!!!COM.*Franck’ "{}" ";"

The following command identifies all files in the path /scores that are written in compound me-
ters:

find /scores -type f -exec grep -1 ’'!!!AMT.*compound’ "{}" ";

The following command identifies all files beginning from the current directory that are rondos:

"

find . -exec grep -il ‘!!!AFR.*rondo’ "{}" ";
Recall that the -i option for grep makes the pattern-match insensitive to upper- or lower-case.

The following command identifies all files in the path non-western that have been designated
as having heterophonic textures:

find non-western -exec grep -il ‘!!!AST.*heterophony’ "{}" ";"

In the path /scores/jazz, we might want to identify all files that contain the style-designation
“bebop:”

find /scores/jazz -exec grep -il ‘! !I1AST.*bebop’ "{}" ";"

The following command identifies all files in the path 18th-century, that include French horns
and oboes:

find 18th-century -exec grep -il ’!!!AIN.*cor.*oboe’ "{}" ";

Of course, more complex regular expressions can be also be defined. For example, the following
command identifies all works composed between 1805 and 1809:

find / -exec grep -1 ‘!!10ODT.*180[5-9]1" "{}" ";*"

There is no restriction on the complexity of the regular expression. The following command iden-
tifies all works composed between 1812 and 1840:

find / -exec egrep -1 ’1!!ODT.*18(1[2-91)|([231[0-9]1)](40)" \
ll{}" II;II

Often the find command can be used to answer research questions more directly. Suppose we
wanted to determine whether German drinking songs more likely to be in triple meter. There are
over four thousand German folksongs encoded in Helmut Schaffrath’s Essen Folksong Collection.
These works contain genre-related tags encoded as “AGN” reference records. One of the genres
distinguished is “Trinklied” (drinking song).

Page 304 Repertoires and Links

In order to answer our question, we need to search the file system for all works that have the “Trin-
klied” designation, and then generate an inventory of meter classifications (available in "AMT"
records).

find /scores -type f -exec grep -1 ’!!AGN.*Trinklied’ "{3}" \
";" | grep ‘!I{!AMT.*’ | sort | uniq -c

For the entire database, the output is as follows:

1 !'1!AMT: compound duple

4 '1!'AMT: irregular
14 !''1!AMT: simple quadruple
5 11IAMT: simple triple

There are just 24 drinking songs in the Essen collection and only five are in triple meters. The
proportion of drinking songs in triple meters turns out to be no different than the distribution of
triple meters in general for German folksongs. In other words, according to the Essen Folksong
Collection, it is not the case that German drinking songs are more likely to be in triple meters.

Using find with the xargs Command

As we saw in Chapter 10, the xargs command can be used to propagate file names from command
to command within a pipeline. Using xargs in conjunction with find provides a powerful means
for finding works that conform to highly complex criteria. For example, the following command
identifies all files in the path /corelli that contain a change of meter signature:

find /corelli -type £ -name ‘*’ | xargs grep -c ‘"“*M[0-9]" \
| grep -v ":[01]1s"’

The output specifies each filename followed by a colon, followed by the number of meter signa-
tures in the corresponding file. For example, in the following output, the third movement from
Opus 1, No. 5 by Corelli is identified as containing 6 meter signatures at different points in the
score:

/corelli/opusln5c.krn:
/corelli/opusln9a.krn:
/corelli/opusln9b.krn:
/corelli/opusln9d.krn:

NN W o

Similarly, the following command identifies all works that contain a change of key signature:

find /scores -type f -name ‘*’ | xargs grep -c ‘"*k\[’ \
| grep -v “:[01]s"’

As a further example of the use of xargs, consider the following extension of the above pipeline.
The grep -v command causes only those files containing more than one key signature to be passed.
The sed command eliminates the colon and the number appended to the filenames. The ensuing
grep -c counts the number of meter signatures in each file. The final grep -v passes only those

Repertoires and Links Page 305

filenames containing 2 or more meter signatures.

find / -type f -name ’'*’ | xargs grep -c ‘“*k\[‘ | \
grep -v ‘:[01}$’ | sed ‘s/:.*$//" | \
xargs grep -c¢ ‘"*M[0-9]’ | grep -v ’:[01]%"’

In summary, the above pipeline identifies all scores that contain both a change of key signature as
well as a change of meter signature.

The xargs command can also be used to process a list of files — where the list has been stored in a
file. For example, suppose we used the find command to locate all scores in compound meters
written for woodwind quintet:

find . -name ‘*’ | xargs grep -1 ‘!!!IAMT:.*compound’ \
| xargs grep -1 ‘!!1AIN: clars cor fagot flt oboe’ > scorelist

The resulting list of files can be used for further processing. For example, we might search these
files for any scores containing changes of key:

cat scorelist | xargs grep -c ’'"“*[A-Ga-g][#-1*:’ I grep -V
r:[011s”

The output identifies all scores in compound meters written for woodwind quintet that contain
changes of key.

Repertories As File Links

Rather than applying commands to files stored in a list, it is often helpful to have all of the files ac-
cessible in one location. That is, we might create a directory containing only those score-files that
meet our selection criteria. it is often helpful to have all of the files accessible in one location. We
might simply make copies of the files in a special directory. However, UNIX systems make it pos-
sible to create “links” to files in other directories without having to make duplicate copies of al-

ready existing files.

Suppose you wanted to make a directory of all scores containing vocal parts. The following com-
mand creates a file (vocalfiles) listing all files in the path /scores that contain one or more

vocal parts:
find /scores -exec grep -1 ’'!!!AIN.*vox’ "{}" ";" > vocalfiles
The contents of vocalfiles might look like the following:
/scores/bach/cantatas/cant140.krn
/scores/bach/chorales/chor217.krn

/scores/bach/chorales/midi/chor368.hmd
etc.

We can create an appropriate new directory using the mkdir command.

Page 306 Repertoires and Links

mkdir vocal

Next, edit the file containing the list of filenames as follows. Insert In -s prior to each filename,
and append the directory name vocal at the end of each line.

ln -s /scores/bach/cantatas/cantl140.krn vocal

In -s /scores/bach/chorales/chor217.krn vocal

In -s /scores/bach/chorales/midi/chor368.hmd vocal
etc.

(The -s option for In is used to create a so-called “symbolic” link.)
Using the chmod command, we can make this file executable, and then we can execute it:

chmod +x vocalfiles
./vocalfiles

We now have a new directory whose files contain scores with vocal parts.

Reprise

The find command provides a convenient way to traverse through an entire file-system looking for
files that conform to specific criteria. In musicological tasks, the find command is especially well
suited to assembling a repertory of scores that exhibit some characteristic(s) of interest. Multiple
selection criteria can be accommodated by using one or more pipes in conjunction with the grep
command.

For convenience, it is often helpful to create a new directory that holds all of works selected for a
study repertory. On UNIX systems, file “links” can be created, so that there is no need to make
multiple copies of the same score. This means that several concurrent directory structures can be
created without duplicating files. For example, a given score may be accessed in one directory
structure via composer, in another directory via instrumentation, in a third directory via genre, and

SO on.

