Chapter 29

Differences and Commonalities

In Chapter 25 we introduced the problem of similarity via the Humdrum simil and correl com-
mands. This chapter revisits the problem of similarity by focussing on differences and commonal-
ities. Specifically, this chapter introduces three additional tools, the UNIX cmp, diff and comm
commands. Although these commands are less sophisticated than the simil and correl commands,
they nevertheless provide convenient tools for quickly determining the relationship between two or
more inputs.

Comparing Files Using cmp

The emp command does a character-by-character comparison and indicates whether or not two
files are identical.

cmp filel file2

If the two files differ, cmp generates a message indicating the first point where the two files differ.
E.g.,

filel file2 differ: char 4, line 10
If the two files are identical, cmp simply outputs nothing (“silence is golden™).
Sometimes files differ in ways that may be uninteresting. For example, we may suspect that a sin-
gle work has been attributed to two different composers. The encoded files may differ only in that

the !t 1COM: reference records are different. We can pre-process the files using rid in order to
determine whether the scores are otherwise identical.

rid -G filel > templ
rid -G file2 > temp2
cmp templ temp2

Of course one of the works might be transposed with respect to the other. We can circumvent this
problem by translating the data to some key-independent representation such as solfa or deg:

rid -GL filel | solfa > templ



Differences and Commonalities Page 291

rid -GL file2 | solfa > temp2
cmp templ temp2

Two songs might have different melodies but employ the same lyrics. We can test whether they
are identical by extracting and comparing any text-related spines. Since there may be differences
due to melismas, we might also use rid -d to eliminate null data records.

extract -i ‘**silbe’ file 1 | rid -GLd > templ
extract -i ‘**silbe’ file 2 | rid -GLd > temp2
cmp templ temp?2

Similarly, two works might have identical harmonies:

extract -i ’‘**harm’ file 1 | rid -GLd > templ
extract -i ’**harm’ file 2 | rid -GLd > temp2
cmp templ temp2

By further reducing the inputs, we can focus on quite specific elements, such as whether two songs
have the same rhythm. In the following script, we first eliminate bar numbers, and then eliminate
all data except for durations and barlines.

extract -i ’**kern’ file 1 | humsed ’'/=/s/[0-91//; \
s/["0-9.=1//g’ | rid -GLd > templ

extract -i ‘**kern’ file 1 | humsed '/=/s/[0-91//; \
s/["0-9.=1//g’ | rid -GLd > temp2

cmp templ temp?2

For some tasks, we might focus on just a handful of records. For example, we might ask whether
two works have the same changes of key.

grep ‘'“*[a-gA-G][#-1*:' file 1 > templ
grep ‘"“*[a-gA-G][#-1*:’ file 2 > temp2
cmp templ temp2

In the extreme case, we might compare just a single line of information. For example, we might
identify whether two works have identical instrumentation:

grep ‘“!!IIAIN:’ file 1 > templ
grep ‘"I1!MIAIN:’ file 2 > temp2
cmp templ temp?2

Comparing Files Using diff

The problem with cmp is that it is unable to distinguish whether the difference between two files is
profound or superficial. A useful alternative to the emp command is the UNIX diff command.
The diff command attempts to determine the minimum set of changes needed to convert one file to
another file. The output from diff entails editing commands reminiscent of the ed text editor. For
example, two latin texts that differ at line 40, might generate the following output:



Page 292 Differences and Commonalities

40c40
< es quiambulas

> es quisedes

Let’s consider again the question of whether two works have essentially the same lyrics. Many
otherwise similar texts might differ in trivial ways. For example, texts may differ in punctuation
or in the use of upper- and lower-case characters. The diff command provides a -i option that ig-
nores distinctions between upper- and lower-case characters. Punctuation marks can be eliminated
by adding a suitable humsed filter.

extract -i ‘**silbe’ filel | text | humsed ‘s/["a-zA-Z ]//g’ \
| rid -GLId > templ

extract -i ’'**silbe’ file2 | text | humsed ’'s/["a-zA-Z 1//g’ \
| rid -GLId > temp2

diff -i filel file2

Every time diff encounters a difference between the two files, it will output several lines identify
the location of the difference and showing the conflicting lines in the two files. The diff command
is line-oriented. Two lines need only differ by a single character in order for diff to generate an
output.

When there are more than a dozen or so differences, the output becomes cumbersome to read. A
useful alternative is to avoid looking at the raw output from diff; instead, we might simply count
the number of lines of output (using we -1). When compared with the total length of the input, the
number of output lines can provide a rough estimate of the magnitude of the differences between
the two files. A suitable revision to the last line of the above script would be:

diff -i filel file2 | wc -1

One problem with this approach is that it assumes that we know which two files we want to com-
pare. A more common problem is looking for any work that is somewhat similar to some given
work. We can automate this task by embedding the above script in a loop so that the comparison
(second) file cycles through a series of possibilities. A simple while loop will enable us to do this.
Since our script may process a large number of scores, we ought to format our output for ease of
reading. The echo command in our script outputs each filename in turn with the a count of the
number of output lines generated by diff.

extract -i ‘**silbe’ $1 | text | humsed ‘s/["a-zA-Z 1//g’ \
| rid -GLId > templ
shift
while [ $# -ne 0 ]
do
extract -i ‘**silbe’ $1 | text | humsed ’‘s/["a-zA-Z 1//g’ \
| rid -GLId > temp2
CHANGES=‘diff -i templ temp2 | wc -1
echo $1 ": " SCHANGES
shift
done



Differences and Commonalities Page 293

rm temp([l2]

Of course this same approach may be applied to other musical aspects apart from musical texts.
For example, with suitable changes in the processing, one could identify works that have similar
rhythms, melodic contours, harmonies, rhyme schemes, and so on.

Comparing Inventories — The comm Command

The diff command is sensitive to the order of data. Suppose that texts for two songs differ only in
that one song reverses the order of verses 3 and 4. Comparing the “wrong” verses will tend to ex-
aggerate what are really minor differences between the two songs. In addition, the above approach
is too sensitive to word or phrase repetition. Many works — especially polyphonic vocal works —
use extensive repetitions (e.g., “on the bank, on the bank, on the bank of the river”). Short texts
(such as for the Kyrie of the Latin mass) are especially prone to use highly distinctive repetition.
How can we tell whether one work has pretty much the same lyrics as another?

Fortunately, most texts tend to have unique word inventories. Although words may be repeated or
re-ordered, phrases interrupted, and verses re-arranged, the basic vocabulary for similar texts are
often much the same. A useful technique is to focus on the similarity of the word inventories. In
the following script, we simply create a list of words used in both the original and comparison

files.
extract -i ‘**silbe’ filel | text | humsed ’s/[.,;:!?]1//g" \
| rid -GLId | tr A-Z a-z | sort -d > inventoryl
extract -i ‘**silbe’ file2 | humsed ‘s/[.,;:!?1//g’ | tr A-Z

a-z | text \
| rid -GLI4 | sort | unig -c | sort -nr > inventory2

Suppose that our two vocabulary inventories appear as follows:

Inventory 1:  Inventory 2:

domine a

et coronasti
eum domine
filio et

gloria eum

in : filio
jerusalem gloria
orietur honore
patri manuum
sancto oper
spiritui patri
super sancto
te spiritui
videbitur super

tuarum



Page 294 Differences and Commonalities

Notice that a number of words are present in both texts, such as domine, et, eum, filio, and so on.
Identifying the common vocabulary items is easily done by the UNIX comm command; comm
compares two sorted files and identifies which lines are shared in common and which lines are
unique to one file or the other.

The comm command outputs three columns: the first column identifies only those lines that are
present in the first file, the second column identifies only those lines that are present in the second
file, and the third column identifies those lines that are present in both files. In the case of our two
Latin texts, the command:

comm inventoryl inventory?2

will produce the following output. The first and second columns identify words unique to in-
ventoryl and inventoryl, respectively. The third column identifies the common lines:

a
coronasti
domine
et
eum
filio
gloria
honore
in
jerusalem
manuum
oper
orietur
patri
sancto
spiritui
super
te
tuarum
videbitur

In the above case, five words are unique to inventoryl, six words are unique to inventory?2
and nine words are common to both.

The comm command provides numbered options that suppress specified columns. For example,
the command comm -13 will suppress columns one and three (outputing column two). (Empty
lines are also suppressed with these options.) A convenient measure of similarity is to express the
shared vocabulary items as a percentage of the total combined vocabularies. We can do this using
the word-count command, we. The first command counts the total number of words and the sec-
ond command counts the total number of shared words:

comm inventoryl inventory2 | wc -1
comm -3 inventoryl inventory2 | wc -1



Differences and Commonalities Page 295

An important point about comm is that the order of materials is important in the input files. If the
word filio occurs near the beginning of inventoryl but near the end of inventory?2 then
comm will not consider the record common to both files. This is the reason why we used an al-
phabetical sort (sort -d) in our original processing.

On the other hand, there are sometimes good reasons to order the vocabulary lists non-alphabeti-
cally. For example, suppose we created our inventories according to the frequency of occurrence
of the words. That is, suppose we use uniq -c | sort -nr to generate a vocabulary list ordered by
how common each word is. Our inventory files might now appear as follows:

Inventory 1:

et

te

gloria
videbitur
super
spiritui
sancto
patri
orietur
jerusalem
in

filio

eum
domine

PREPRPREPRPREPREPRPRPPEPNMODW

Inventory 2:

et
gloria
eum
tuarum
super
spiritui
sancto
patri
oper
manuum
honore
filio
domine
coronasti
a

PR B RRRRRRERERRODNDS

Comparing these two inventories will produce little in common due to the presence of the num-
bers. For example, the records “3 et” and “4 et” will be deemed entirely different.
However, we can eliminate the numbers using an appropriate sed command leaving us with vocab-
ulary lists that are ordered according to the frequency of occurrence of the words. If we apply the



Page 296 Differences and Commonalities

comm command to these lists then the commonality measures will be sensitive to the relative fre-
quency of words within the vocabularies.

Reprise

In this chapter we have introduced the UNIX cmp, diff and comm commands. The cmp command
determines whether two files as are the same or different. The diff command identifies how two
files differ. The comm command identifies which (sorted) lines two files share in common; comm
also allows us to identify which lines are unique to just one of the files.

The value of these tools is amplified when the inputs are pre-processed to eliminate unwanted or
distracting data, and when post-processing is done (using wc) to estimate the magnitude of the dif-
ferences or commonalities.

Together with the simil and correl commands discussed in Chapter 25, these five tools provide a
_variety of means for characterizing differences, commonalities, and similarities.





