Chapter 27

Text and Lyrics

Musical texts include lyrics, librettos, stage directions, recitativo and other collections of words. It
goes without saying that words provide important information related to semantics, imagery, simi-
les, allusion, irony, parody, word painting, and emotion. In addition, words can add to the
sonorous dimension of music, including rhyme schemes, word-rhythms, and phonetic and syllabic
effects such as alliteration, vowel-coloration.

Humdrum provides three pre-defined representations pertinent to text or lyrics. The * *text rep-
resentation can be used to represent words; the **silbe representation can be used to represent
syllables; and the ** I PA representation can be used to represent phonemes (via the International
Phonetic Alphabet). Discussion of the ** IPA representation will be delayed until Chapter 34. In
this chapter we will look at various representational and processing issues related to the manipula-
tion of words and syllables.

The **text and **silbe Representations

Syllable- and word-oriented representations are illustrated in the following excerpt from a motet
by Byrd (Example 27.1). The encoded Humdrum data includes three spines: * *text, **silbe
and **kern. Normally, only the **silbe and **kern data would be encoded — since the
**text spine can be generated from the * *silbe representation.

Example 27.1. From William Byrd, Why Do I use my paper ink and pen.

L\EE

BT

\EEE

L1
| 1688

e

T
\

(JESS oS

Why

2. TT%

use my pa

¢

0

¢
K]

¢

pen,

e
T

i —

e

1] 1
| S|
)

(JEM I

to

coun - sel what to

Page 264 Text and Lyrics

111COM: Byrd, William
1110TL: Why do I use my paper ink and pen.

**text **gilbe **kern
*LEnglish *LEnglish *
=11 =11 =11
. . 2r
Why Why 29
=12 =12 =12
do do 2b-
I I 2a
=13 =13 =13
use use 4g
my my 4g
paper pa- [2dd
=14 =14 =14

| 2dd]
. -per 2cc
=15 =15 =15
ink ink 2.ff
and and (4ee
=16 =16 =16

| 4dd

| 4cc

| 4b-
. | 4cc
=17 =17 =17
pen, pen, 1dd
=18 =18 =18
and and 1dd
=19 =19 =19
pen, pen, 1dd
=20 =20 =20
. . 2r
and and 2ff
=21 =21 =21
call call 2.ee
my my 44dd
=22 =22 =22
wits ' wits lcc#
=23 =23 =23
to to 2ee
counsel coun- [2aa
=24 =24 =24
. -sel 4aal
what what 4ff
to to (8ee

| 8dd

=25 =25 , =25

=27
say,
=28

|
I
|
|
=26
|
|
|

=27
say.,
=28

Text and Lyrics

dcc
4dd
4.ee
8dd
=26
dee
dee
2dd)
=27
lcc#
=28

Page 265

* * _ *
Note that all three representations in Example 27.1 make use of the common system for represent-
ing barlines. In the **text representation tokens represent individual words. In some scores,
several words will be associated with a single moment (or pitch), as in the case of recitativo pas-
sages. Multi-word tokens are encoded as Humdrum multiple-stops with a space separating each

word on a record.

In the **silbe representation tokens represent individual syllables. In **silbe the hyphen (-)
is used explicitly to signify syllable boundaries and the tilde () is used to signify boundaries be-
tween hyphenated words (necessarily also a syllable boundary). In other words, four types of syl-
lables are distinguished by **silbe: (1) a single-syllable word, (2) a word-initiating syllable, (3)
a word-completing syllable, and (4) a mid-word syllable. The following table illustrates how these
signifiers are used:

Table 26.1.
text a single-syllable word
text- a word-initiating syllable
-text a word-completing syllable
-text- amid-word syllable
text~ asingle-syllable word beginning a hyphenated multi-word
“text a single-syllable word completing ahyphenated multi-word
“text~ a single-syllabe word continuing a hyphenated multi-word
“text- a word-initating syllable continuing a hyphenated multi-word
-text” a word-completing syllable — part of a hyphenated multi-word

Both the **text and **silbe representations are able to distinguish different tones of voice
such as spoken voice, whispered voice, laughing voice, emotional voice, Sprechstimme and hum-
ming. In addition, there are signifiers for indicating untexted laughter and untexted sobs or crys.
Some sample signifiers are shown in Table 26.2

Page 266 Text and Lyrics

Table 26.2.

d
[\

upper-case letters A to Z
lower-case letters a-z
open parenthesis
closed parenthesis
beginning of phrase
end of phrase
silence (rest) token (character by itself)
humming voice (character by itself)
beginning of spoken voice
[beginning of whisper
end of spoken voice
] end of whisper
beginning of Sprechstimme
end of Sprechstimme
beginning of laughing voice
end of laughing voice
laughter (no text)
sob or cry (no text)
beginning of emotional voice
S end of emotional voice
follows stressed word (* *test) or stressed syllable (* *silbe)
Signifiers common to **text and **silbe

V)]
§
N

ANVER @AYV A B~

The text Command

In most notated music, lyrics are written using a syllabic representation rather than a word-orient-
ed representation. The **silbe representation is typically a better representation of the score
than * *text. However, for many analytic applications, words often prove to be more convenient.
The Humdrum text command can be used to translate * *silbe data to **text data. In gener-
al, syllabic information is useful for addressing questions related to rhythm and rhyme, whereas
text information is more useful for addressing questions related to semantics, metaphor, word-
painting, etc.

Invoking the text command is straightforward:
text inputfile > outputfile

A simple text-related task might be looking for occurrences of a particular word, such as the Ger-
man “Liebe” (love). If the lyrics are encoded in the **text representation, then a simple grep
will suffice:

grep -n ’Liebe’ schubert

Recall that the -n option gives the line number of any occurrences found. If the input is encoded
in the * *silbe representation, then the output of text can be piped to grep:

extract -i ‘**silbe’ schubert | text | grep -n ’‘Liebe’

Text and Lyrics Page 267

Given a **silbe input, a inventory of words can be generated using sort and uniq in the usual
way:

extract -i ’‘**silbe’ song | text | rid -GLId | sort | uniqg

Frequently, it is useful to search for a group of words rather than individual words. Suppose we
are looking for the phrase “white Pangur” The context command can be used to amalgamate
words as multiple stops. If we are looking for a phrase consisting of just two words, we might use
the -n 2 option for context:

text barber | context -n 2 | grep -i ‘white Pangur’

Alternatively, we might amalgamate words so they form sentences, or at least phrases. Puntuation
marks provide a convenient marker for ending the amalgamation process carried out by context.
In the following command, we have defined a regular expression with a character-class containing
all of the puntuation marks. The output from this command will display all punctuated phrases
(one per line) that contain the phrase “white Pangur.”

text | context -e ‘[.,;?!]’ | grep -i ‘white Pangur’

The fint Command

Another common task is simply to provide a readable text of the text or lyrics of a work. Given a
**text representation, we can use the rid command to eliminate all records except non-null data
records. This will result in a list of words — one word per line. UNIX provides a simple text for-
matter called fmt that will assemble words or lines into a block text where all output lines are
roughly the same width. Consider the Gregorian chant A Solis Ortus from the Liber Usualis
(shown in Example 27.2.)

Example 27.2. Beginning of chant A Solis Ortus.

i& I
1 o S o O
O O — — [O TP= o2
ry . P S) ~ L&] O [@ M4 ~ X3 ~
o3 - O (@] =) [@)
© © -
A so/- lis or/- tus car/- di- ne ad us- que ter/- rae li/-
LY] |
LI o O—O T
£ L) O O — ~ = L & TF2N O O
ry A 7 ~ -~ L © T [@ MPN o—5\) —
L= T —
mi- tem, Chri/- stum . ca- nal- mus prin/- ci- pem,

The Latin text for this chant can be formatted as follows:

extract -i ‘**silbe’ chantl2 | text | rid -GLId | fmt -50

The -50 option tells fmt to place no more than 50 characters per line. The default line-length is 72
characters. The above pipeline produces the following output:

Page 268 Text and Lyrics

A solis ortus cardine ad usque terrae limitem,
Christum canamus principem, natum Maria Virgine.
Beatus auctor saeculi servile corpus induit: ut
carne carnem liberans, ne perderet quos condidit.
Castae parentis viscera cae lestis intratgratia:
venter puellae bajulat secreta, quae non noverat.
Domus pudici pectoris tem plum repente fit Dei:
intacta nesciens virum, concepit alvo filium.

Another useful output would have the text arranged with one sentence or phrase on each line. As
before we can use the context command with the -e option to amalgamate words, where each
amalgamated line ends with a punctuation mark:

extract -i ‘**silbe’ chantl2 | text | context -e ‘[.,;:?!]1" \
| rid -GLId

The corresponding output is:

A solis ortus cardine ad usque terrae limitem,
Christum canamus principem,

natum Maria Virgine.

Beatus auctor saeculi servile corpus induit:

ut carne carnem liberans,

ne perderet quos condidit.

Castae parentis viscera cae lestis intratgratia:
venter puellae bajulat secreta,

quae non noverat.

Domus pudici pectoris tem plum repente fit Dei:
intacta nesciens virum,

concepit alvo filium.

Yet another way of arranging the text output would be to parse the text according to explicit phrase
marks in the **kern data. This will require a little more work, but the result will be worthwhile.
First, we will need to transfer the end-of-phrase signifier (‘}’) from the **kern spine to the
**gilbe spine. This transfer entails four steps. (1) Extract the monophonic **kern spine and
eliminate all data signifiers except closing curly braces (‘}’). Store the result in a temporary file:

extract -i ‘**kern’ chantl2 | humsed ‘s/["}1*//; s/7$/./" \
> templ

Notice that humsed has been given two substitution commands. The first eliminates all data signi-
fiers except the close curly brace. The second substitution transforms empty output lines to null
data records by adding a single period.

(2) Extract the **silbe spine, translate it to * *text and store the result in another temporary
file:

extract -i ‘**silbe’ chantl2 | text > temp2

Text and Lyrics Page 269

(3) Assemble the two temporary files together and use the cleave command to join the end-of-
phrase marker to the syllable representation.

assemble templ temp2 | cleave -i ‘**kern,**text’ \
-0 '**text’ > temp3

With this cleaved data we can now use the context command to amalgamate phrase-related text.
Finally, rid is used to eliminate everything but non-null data records.

context -o = -e } temp3 | rid -GLId
The result is as follows:

A solis ortus cardine }

ad usque terrae limitem, }
Christum canamus principem, }
natum Maria Virgine. }
Beatus auctor saeculi }
servile corpus induit: }

ut carne carnem liberans, }
ne perderet quos condidit. }
Castae parentis viscera }
cae lestis intratgratia: }
venter puellae bajulat }
secreta, quae non noverat. }
Domus pudici pectoris }

tem plum repente fit Dei: }
intacta nesciens virum, }
concepit alvo filium. }

We could clean up the output by using the sed command to remove the trailing closed curly brace.
We simple add the following to the pipeline:

| sed 's/}//"'

You might have noticed that each of the above phrases seems to consist of eight syllables. We can
confirm this by returning to the syllabic rather than word-oriented output. For the above command
sequence, simply omit the text command and replace **text with **silbe. The revised script
becomes:

extract -i ’‘**kern’ chantl2 | humsed ’'s/["}1*//; s/7$/./" \
> templ

extract -i '**silbe’ chantl2 > temp2

assemble templ temp2 | cleave -i ’**kern, **silbe’ \
-0 ’'**gilbe’ > temp3

context -o = -e } temp3 | rid -GLIA | sed ’'s/}//’

The corresponding output is:

Page 270 Text and Lyrics

A so/- -lis or/- -tus car/- -di- -ne

ad us- -que ter/- -rae 1li/- -mi- -tem,

Chri/- -stum ca- -na/- -mus prin/- -ci- -pem,
na/- -tum Ma- -ri/- -a Vir/- -gi- -ne.

Be- -a/- -tus au/- -ctor sae/- -cu- -1li

ser- -vi/- -le cor/- -pus in/- -du- -it:

ut car/- -ne car/- -nem l1li/- -be- -rans,
ne per/- ~-de- -ret quos con/- -di- -dit.
Ca/- -stae pa- -ren/- -tis vis/- -ce- -ra

cae/ le/- -stis in/- -trat- -gra/- -ti- -a:
ven/- -ter pu- -el/- -lae ba/- -ju- -lat
se- -cre/- -ta, Qquae non no/- -ve- -rat.

Do/~ -mus pu- -di- -ci pe/- -cto- -ris
tem/ plum re- -pen/- -te fit De/- -i:
in- -ta/- -cta ne/- -sci- -ens vi/- -rum,
con- -ce/- -pit al/- -vo fi/- -1i- -um.

If we are looking for vocal texts that exhibit a recurring rhythm, we might make a simple addition
to the above script. Instead of outputting the actual syllables in each phrase, we would output a
count of the number of syllables in each phrase. The standard awk utility allows us to write sim-
ple in-line programs. The following awk script simply outputs the number of fields (white-space
separated text) in each input line:

awk ‘{print NF}’

If we add this to the end of our command sequence, then the output would simply be a sequence of
numbers — where each number indicates the number of syllables in successive phrases. In the
case of O Solis Ortus our output would consist of a series of 8s indicating that each. phrase con-
tains precisely eighth syllables.

By way of summary, we can generalize the above process so that syllable/phrase schemes can be
generated for any syllable-related input. The following script counts the number of syllables in
successive phrases for a single input file.

SYLLABLE - count the number of syllables in each phrase

#

Usage: syllable filename [> outputfile]

#

extract -i ‘**kern’ $1 | humsed ‘s/["}1*//; s/"$/./’ > templ
extract -i ‘**silbe’ $1 > temp2

assemble templ temp2 | cleave -i ’**kern,**silbe’ -o ’**silbe’ \

| context -o = -e } | rid -GLI4 | sed ’'s/}//’ | awk ’{print NF}’

rm temp[1l2]

Variations on this theme abound. For example, if we wish to determine the number of syllables
between successive punctuation marks, the following pipeline could be used:

extract -i ‘**silbe’ | context -o = -e ‘[.,;:?2!]" \
| rid -GLId | awk ’{print NF}’

Text and Lyrics Page 271

Rhythmic Feet in Text

Another question related to rhythm is to identify rhythmic patterns. Once again, we might look at
the chant O Solis Ortus. Below we have recoded the syllables in each phrase, where the value 0
indicates an unstressed syllable and 1 indicates a stressed syllable:

CORRFRORRRPROOCOORR OO
FRPOORORORPRRRERREPOOOHR
CO0O0O0OO0OO0OO0OO0O0O0O0O0OOOO
PR P OORREREPORRERLRRERRR
C0OO0OO0OO0OO0OODO0OO0OO0O0OO0O0 OO O
PO ORRPRERRRRRIRRR |
O P O0OO0OO0OO0CO0OO0OO0OO0OOOOOO
OO OO0 OO0 O0O0CO0O00O0O0oOoO o o

The above output was generated using the humsed command. Any syllable containing a trailing
asterisk (*) is re-written as a ‘1°, otherwise as a ‘0’.

| humsed ‘s/[~ 10" 1**/1/g; s/["11["11*$/0/g’
With the above output, we can generate an inventory of phrase-related text-rhythms.
| sort | uniq -c | sort

With the following results:

N el L Sy
O P ook o
cCooRrRROR
coocoooooo
PR OoORRPORE
cooocoooo
RO R RO R
oOroOoORrOoOoO
cooooo0oo0o

We can create a summary rhythmic pattern by adding together the values in each column — that
is, counting the number of accented syllables that occur in each syllable position within the phrase.
We can isolate each column using the UNIX cut command; cut is analogous to the Humdrum ex-
tract command. Fields are delineated by white space (tabs or spaces). For example, cut -f 1 will
isolate the first column of numbers. We can then pipe the results to the stats utility in order to cal-
culate the numerical total. For example,

Page 272 Text and Lyrics

| cut -f 1 | stats | grep ‘total’
| cut -f 2 | stats | grep ’total’
. | cut -f 3 | stats | grep ’‘total’
etc

For the chant O Solis Ortus the results are as follows:
7 9 013 014 2 0

This means that there are seven stressed syllables in the first syllable position of the phrase, nine
stressed syllables in the second syllable position, and so on. These results suggest the following
rhythmic structure: medium-strong-weak-strong-weak-strong-weak-weak. By way of conclusion,
it appears that this work has a strongly rhythmic text structure — implying that this ‘chant’ might
have been sung rhythmically.

Concordance

A traditional text-related reference tool is the concordance. Concordances allow users to look up a
word, to see the word in the context of several preceding and following words, and provide de-
tailed information about the location of the word in some repertory or corpus.

Suppose, for example, that we wanted to create a concordance for the lyrics in Samuel Barber’s
songs. We would like to create a file that has a structure such as shown in Table 26.3 below. The
first column identifies the filename. The second column identifies the bar number in which the
keyword occurs. The third column gives a five-word context where the middle word (in bold)
identifies the keyword.

Table 26.3.

chant29 4 ut possim cantare, Alleluia: gaudebunt
chant29 7 mea, dum cantavero tibi: Alleluia,
chant27 1 Cantate Domino canticum novum Alleluia:
chant54 4 Cantate Domino canticum novum, quia
chant24 10 Cantate Domino canticum novum: guia
chant4?2 14 totus non capit orbis, in

chant47 5 et exaltavit caput ejus; et

chantl2 1 solis ortus cardine ad usque

chantl4 4 arrisit orto caritas: Maria, dives
chantl2 7 induit: ut carmne carnem liberans,
chant58 5 et in carne mea videbo

chantl12 7 ut carne carnem liberans, ne

chantl14 6 sola quae casto potes fovere

chantl7 3 et discerne causam meam de

chant2l 2 Dominus a cena, misit aquam

etc.

We would also like to provide a grep-like search tool so users can search for particular keywords.

The following script will generate our concordance file. For each file specified in the input, we ex-

Text and Lyrics Page 273

tract the **silbe spine and store it. We then process this spine no less than three times. In the
first pass, we translate from the **silbe to the * *text representation, and generate a context
of 5 words (-n 5) making sure to omit barlines (-0 =). We also pad the amalgamated line with
three null tokens (-p 3) so the context is centered near the third word in the sequence. In the sec-
ond pass, we generate a new spine (* *niums) that contains only bar numbers. The ditto command
is used to ensure that every data record contains a bar number. To ensure that pick-up bars are
numbered with the value 0, we’ve used humsed to replace any leading null-tokens with the num-
ber 0. In the third pass, we replace every data token with the name of the file. Finally, we assem-
ble all three of these spines, eliminate everything but data records, and also eliminate lines that
don’t contain any text. All of this processing is carried out in a while-loop that cycles through all
of the files provided when the command is invoked.

while [$# -ne 0]

do
extract -i ‘**silbe’ $1 > templ
text templ I context -o = -n 5 -p 3 > temp2
num -n = -a ‘**nums’ templ | extract -i ‘**nums’ \

| ditto | humsed ‘s/./0/' > temp3
humsed "s/.*/$1/" templ > temp4
assemble temp4 temp3 temp2 | rid -GLIA | sed '/.* .$/d’
shift;
done
rm temp([l-4]

Having generated our concordance file, we can now create a simple tool that allows us to search
for keywords. Suppose we kept our concordance information in a file called ~/home/con-
cord/master. In essence, we’'d like to create a command akin to grep — but one that searches
this file solely according to the third word in the in the context. We cannot use grep directly since
it will find all occurrences of a word no matter where it occures in the context. We need to tell
grep to ignore all other data. The filename, bar number, and context fields are separated by tabs.
We can ignore the first two fields by eliminating everything up to the last tab in the line. Since
words are separated by blank space, the expression [~]+ will match a word not containg spaces.
In short, the regular expression "~ . *<tab>["]+ [*]+ " will match everything up to the first tab,
followed by two additional words. All we need to do is paste our keyword to the end of this ex-
pression.

Below is a simple one-line script for a command called keyword. The user simply types the com-
mand keyword followed by a regular expression that will allow him/her to search for a given word
in context. Note that since we’ve used the extended regular expression character ‘+’ — we must
invoke egrep rather than grep in our script:

KEYWORD - A script for searching a master concordance file
4 .

Usage: keyword <regular expression>

#

egrep "".* [~ 1+ [~ 1+ $1" ~/home/concord/master

Concordances can be used for a number of applications. One might use a concordance to help
identify metaphor or image related words (such as “light,” ““darkness,” etc.)

Page 274 Text and Lyrics

Simile

One of the most important poetic devices is the simile — where an analogy or metaphorical link is
created between two things (“My love is like a red red rose.”) In English, similes are often
(though not always) signalled by the presence of the words “like” or *“as.”

A simple task involves searching for ‘like’ or ‘as’ in the lyrics of some input. For each occurrence
of these words, suppose that we would like to output a line that places the word in context —
specifically the preceding and following four words.

First we transform and isolate the text data using the text and extract commands:
text inputfile | extract -i ’**text’

Since the input may contain multiple-stops, we might consider the precaution of ensuring no more
than one word per data record. For this we can use humsed. Specifically, we can replace any
spaces by a carriage return. Since the carriage return is interpreted by the shell as the instruction
to begin executing a command, we need to escape it. Depending on the shell, the carriage return
can be escaped in various ways. One way is to precede the carriage return by control-V (meaning
“verbatim”). Another way is to type control-M rather than a carriage return. In the following
command we have used the backslash to escape a control-M character:

text inputfile | extract -i ‘**text’ | humsed ‘s/ */M/g’ \
| egrep -4 '"~|(like)|(as)$’

Having ensured that there is no more than one word per line we can now search for a line contain
just “like” or “as.”” The -4 option for egrep causes any matched lines to be output with four pre-
ceding and four following lines of context. In addition, an extra line is added consisting of two
dashes (--) to segregate each pattern output. That is, for each match, ten lines of output are typi-
cally given. In order to generate our final output, we need to transform the linear list of words into
a horizontal list where each line represents a single match for “like” or “as.”

The context command would enable us to do this. Unfortunately, however, the output from egrep
fails to conform to the Humdrum syntax. In particular, adding ~\ * to the regular expression will
fail to ensure a proper Humdrum output since preceding and following contextual lines will also
be output.

The hum command is a special command that takes non-Humdrum input and adds sufficient inter-
pretation records so as to make the input conform to the Humdrum syntax. Typically, this means
simply adding a generic initial exclusive interpretation (**A) and a spine-path terminator (*-). If
the input contains tabs, then appropriate spines will be added.

text inputfile | extract -i ‘**text’ | humsed ‘s/ */M/g’ \
| egrep -4 ‘"] (like)|(as)$’ | hum

Now we can make use of the context command. Each context ends with the double-dash delim-
iters generated by egrep. The rid command can be used to eliminate the interpretations added by
hum.

Text and Lyrics Page 275

text inputfile | extract -i ‘**text’ | humsed ’'s/ */\"M/g’ \
| egrep -4 '"|(like)|(as)$’ | hum | context -e '--' \
| rid -1d
Word Painting

Word painting has a long history in music. There are innumerable examples where the music has
somehow reflected the meaning of the vocal text. Suppose we wanted to determine whether words
designating height (e.g., English “high,” German “hoch,* French “haute/haut”) tend to coincide
with high pitches.

A simple approach would be to extract those sonorities that coincide with any of the words
high/hoch/haut and determine the average pitch. We can then contrast this average pitch with the
average pitch for the repertory as a whole. Any significant difference might alert us to possible

word painting.

First we translate any pitch data to **semits and any **silbe data to **text. We will also
filter the outputs to ensure that only **semits and **text are present.

semits * | text | extract -i ‘**semits, **text’

Since a word may be sustained through more than one pitch, and a pitch may be intoned for more
than one word, we should use the ditto command to ensure that null tokens are filled-in.

semits * | text | extract -i ‘**semits,**text’ | ditto -s

Next, we can use egrep to search for the words of interest:

[}
~

semits * | text | extract -i ‘**semits,**text’ | ditto -s
| egrep -i “~*|high|hoch|haut’

Notice the addition of the expression "\ * in the search pattern. This expression will match any
Humdrum interpretation records and so ensures that the output conforms to the Humdrum syntax.
We can now isolate the * *semits data and pass the output to stats in order to determine the av-
erage pitch for the words coinciding with the words high/hoch/haut:

semits * | text | extract -i ‘**semits,**text’ | ditto -s =\
| egrep -i ‘“*|high|hoch|haut’ | extract -i ‘**semits’ |
stats

The average pitch for the entire work can be determined as follows:

semits * | extract -i ‘**semits’ | ditto -s = | rid -GLI \
| stats

Page 276 Text and Lyrics

Emotionality

Musical texts often convey or portray a wide range of emotions. Some texts celebrate the ecstacy
of love or lament the sorrow of loss. Yet other texts exhibit little emotional content. Suppose that
we wanted to create a tool that would allow us to estimate the degree of emotional “charge” in the
lyrics of any given vocal work. A simple approach might be to look for words that are commonly
associated with high emotional content.

Table 26.4 shows a sample of six words from a study where 10 people were asked to rate the de-
gree of emotionality associated with 100 English words. Participants rated each word on a scale
from —10 to +10 where —10 indicates a maximum negative emotional rating and +10 indicates a
maximum positive emotional rating. The values shown identify the average rating for all 10 par-
ticipants.

Table 26.4. Average Emotionality Ratings for English Words.

begin +3.8
river +4.2
friend +5.2
love +8.6
hate -9.7
detest —9.8

Clearly, such a rating system might allow us to create a tool that would automatically search a
large database and identify those vocal works whose lyrics are most emotionally charged. One
way to generate a crude index of emotionality is to measure the average ratings for the ten most
emotion-laden words in a given input.

The humsed command provides an appropriate place to start. In effect, we would take a table
(such as Table 26.4) and use it to create a series of substitutions. Emotionally-charged words
would be replaced by a numerical rating. Our humsed script would have the following form. No-
tice that the first substitution is used to eliminate punctuation marks.

s/l.,;:"""1?1//g
s/begin/+3.8/
s/river/+4.2/
s/friend/+5.2/
s/love/+8.6/
s/hate/-9.7/
s/detest/-9.8/
/170-9+-1/s/.%/./

Also notice that the final command transforms any data records that contains anything other than a
number to a null data token. In other words, words that are not present in the emotionality list are

not rated.

In order to process our input, any syllabic text would first be translated to the **text representa-
tion, and all other spines discarded using extract -i.

text inputfile | extract -1 ’'**text’

Text and Lyrics Page 277

Then we would translate the words using our “emotionality” script, eliminate everything other
than data records, and calculate the numerical statistics:

text inputfile | extract -i ‘**text’ | humsed -f emotion \
| rid -GLId | stats

In general, works whose lyrics express predominantly positive emotions ought to exhibit positive
emotionality estimates. Similarly, works expressing predominantly negative emotions ought to ex-
hibit negative emotionality estimates. Of course the process of averaging may be deceptive. Two
sorts of problems may arise. First, a large number of fairly neutral words will tend to dilute an
otherwise large positive or negative score. It may be preferable to observe the maximum positive
and negative values. Alternatively, it may be appropriate to limit the average to (say) the ten most
emotionally charged words. We can do this by sorting the numerical values and using the head
and tail commands to select the highest or lowest values. In our revised processing, we use sort
-n to sort the values in numerical order — placing the output in a temporary file. The UNIX head
command allows us to access a specified number of lines at the beginning of a file: the option -5
specifies the first five lines. Similarly, the UNIX tail command allows us to access a specified
number of lines at the end of a file. The ten highest and lowest values are then concatenated to-
gether and piped to the stats command:

text inputfile | extract -i ’**text’ | humsed -f emotion \
| rid -GLIdA | sort -n > temp

head -5 temp > lowest

tail -5 temp > highest

cat highest lowest | stats

A second problem with averaging together emotion rating values is that an emotionally-charged
work might include a rough balance of passionate words expressing both positive and negative
emotions. This might result in an average near zero and be mistaken for lyrics that exhibit little
emotionality. The stats command outputs a variance measure that can be used to gauge the spread
of the data. However, another way to address this problem is by ignoring the plus and minus signs
in the input. That is, a rough index of emotionality — independent of whether the emotion is pre-
dominantly negative or positive would simply focus on the most emotionally charged words.

The plus and minus signs can be eliminated using a simple humsed substitution prior to numerical
sorting:

humsed ’'s/[+-1//g"’

Once again, we could use the head command to isolate the 10 or 20 most emotionally charged
words.

Another variant of this approach might be to identify those words in a text which are most emo-
tionally charged. Suppose we wanted to determine the location of the most emotionally charged
word. A combination of sort and grep can be applied to this task. First we generate a spine con-
taining the emotional-charge values taking care to eliminate the signs:

s
§
i
I
E
E
i
]
|

text inputfile | extract -i ‘**text’ | humsed -f emotion \
| humsed ’s/[+-1//g’ > charges

Page 278 Text and Lyrics

Next we assemble this new spine with the original input:
assemble charges inputfile

We can isolate data records using rid and then use sort -n to sort according to the numbers present
in the first column. The most emotional charged word will be at the end of the file (largest num-
ber) so we can use tail -1 to identify the word:

assemble charges inputfile | rid -GLId | sort -n | tail -1

Having established what word has been estimated as having the highest emotional-charge, we can
then use grep -n to establish the location(s) of this word in the original input file.

Other Types of Language Use

Apart from emotionality, language tends to be used differently in different musical genres. The
contrast between aria and recitative provides a classic example. The aria is intended to be a poetic
reflection of a certain emotional state or reaction whereas the recitative moves the action along by
focusing on concrete circumstances. Any number of variants on our “emotionality” processing
can be conceived. For example, we might create another language index related to the degree of
abstraction/concreteness for words. Words such as Verona, knife and Montague are comparatively
concrete, whereas words such as feud, love and tragedy are more conceptual or abstract. We
might expect to be able to observe such differences in recitative versus aria texts.

Similarly, differences in language use can be found in folk and popular music. In the case of the
folk ballad, a detailed story unfolds. Differences in language use may be correlated with the
1 1 1 AGN reference record used to identify genres.

Reprise

In this chapter we have introduced two text-related representations: * *text and **silbe. We
have examined the text command (which translates from **silbe to **text). We have also
been exposed to the UNIX fmt command (a simple text formatter), the cut command (similar to
extract -f), and the head and tail commands.

In Chapter 34 we will examine further representations and processes related to phonetic data.

