Chapter 26

Moving Signifiers Between Spines

In many types of tasks is it useful to be able to transfer signifiers from one spine to another. In this
chapter we will discuss two commands. The rend command makes it possible to split characters
in a single spine and distribute them across two or more spines. The cleave command does the re-
verse: it allows characters that are distributed across two or more spines to be gathered into a sin-
gle new spine. These two commands provide opportunities to create Humdrum spines that contain
precisely the information of interest to the user.

The rend Command

The rend command allows a Humdrum spine to be broken apart into two or more spines. Differ-
ent pieces of information can be distributed to the individual output spines. Consider for example
the following spine containing * *pitch data:

**pitch
Ab3

F#4

C5

*

The rend command might be used to structure this as three independent spines:

**octave **note **accidental
3 Ab b

4 F# #

5 C

* _ * *

The operation of rend requires a reassignment file where each line contains an output exclusive in-
terpretation, followed by a tab, followed by a regular expression. In the above case, the reassign-
ment file (reassign) contained the following:

**octave [0-9]
**note [A-Gb#x]
**gccidental [b#x]

The first line tells rend that any signifiers matching the character-class 0-9 should be output ina

Moving Signifiers Between Spines Page 257

spine labelled * *octave. The second line causes signifiers matching the upper-case letters A to
G and the b, # and x signifiers to be output in a spine labelled * *note. The third line causes sig-
nifiers matching just b, # and x to be output in a spine labelled **accidental.

The above output was generated by invoking the following command:

rend -i ‘**pitch’ -f reassign inputfile

Note that the -i and -f options are mandatory. The -i option tells rend which input spines to pro-
cess and the -f option tells rend the name of the file containing the spine-reassignments.

The rend command is typically paired with a subsequent cleave command.

The cleave Command

The cleave command amalgamates concurrent data tokens in two or more spines into a single data
spine. In effect, cleave does the opposite of rend. By way of example, cleave can be used to
transform the following:

* *A * * B * *C

a b c

A B C

* * * _
into:

**new

abc

ABC

*

Specifically, the above “cleaving” would be done using the following command:
cleave -i ‘**A,**B,**C’ -o '**new’ inputfile

Both the -i and -o options are mandatory. The -i option tells cleave which exclusive interpretations
should be cleaved together. In the above case, we have provided a list of three types of data. The
-0 option tells cleave what to call the resulting cleaved spine. In this case, we’ve simply called the

result * *new.

Suppose that we would like to automatically add key-velocities to some **MIDI data that reflect
the normal accents arising from the meter. For example, in 4/4 meter, we would like the first note
in each measure to be strongest, the third beat to be next most strongest and so on. Recall that
**MIDT data tokens consist of three elements: (1) the duration in MIDI clock ticks, (2) the key
number (also on/off indication), and (3) the key velocity. In order to add accents, we need to
change the key velocity values. The maximum MIDI key velocity value is 127; the minimum value
is 0; and the default value is 64.

Consider the following hypothetical input file:

Page 258 Moving Signifiers Between Spines

**kern

*M4/4

=1-

4c

- 8d

8e

8f

8g

8a

8b

=2

2cc

*
The metpos command can be used to identify the metric position of various note onsets. Before
using metpos however, we must use the timebase command to create an isorhythmic record struc-
ture. Since the shortest note is an eighth-note, the appropriate command is as follows.

timebase -t 8 scale > scale.tb
Using the timebased output, we can then invoke the metpos command:
metpos scale.tb > scale.met

The resulting output contains both the original input (on the left) and the metric position spine (on
the right):

**kern **metpos
*M4/4 *M4/4
*tb8 *tb8

=1- =1-

4c
8d
8e
8f
8g
8a
8b

2cc

U T TR O SR O R N U N
[N}

* *
Let’s now eliminate the null data tokens introduced by timebase. Using humsed, we delete each
data record beginning with a period character:

humsed ’'/"\./d’ scale.met > scale.tmp

Moving Signifiers Between Spines Page 259

Next, we can use the recode command to change the metric position values to appropriate MIDI
key velocities. We might use the following reassignment file (named accent):

== 100
== 80
== 60
== 40
else error

In applying recode we will take care to avoid processing measure numbers using the -s (skip) op-
tion:

recode -f accent -s "= -i ‘**metpos’ scale.tmp > scale.acc

~ The output will now appear as follows:

**kern **metpos
*M4/4 *M4/4

*tb8 *tb8
=1- =1-
4c 100
8d 60
8e 40
8f 80
8g 40
8a 60
8b 40
=2 =2
2cc 100

* *

Now we can use the midi command to generate * *MIDI data:
midi scale.acc > scale.mid

The result is given below:

**MIDI **metpos
*Chl *

*M4/4 *M4/4
*tb8 *th8

=1~ =1-
72/60/64 100

72/-60/64 72/62/64 60
36/-62/64 36/64/64 40
36/-64/64 36/65/64 80
36/-65/64 36/67/64 40
36/-67/64 36/69/64 60
36/-69/64 36/71/64 40

Page 260 Moving Signifiers Between Spines
=2 =2
36/-71/64 36/72/64 100
144/-72/64

* *

Before using cleave to join the new key velocity values to the **MIDI data we need to delete the

current key-down velocities. These are the values ‘64’ preceding the tab character. The humsed

command can be used as follows:
humsed ‘s/64<tab>/<tab>/' scale.mid > scale.tmp

The modified output will now be:

**MIDI **metpos
*Chl *
*M4/4 *M4 /4
*tbh8 *tb8
=1~ =1-
72/60/ 100
72/-60/64 72/62/ 60
36/-62/64 36/64/ 40
36/-64/64 36/65/ 80
36/-65/64 36/67/ 40
36/-67/64 36/69/ 60
36/-69/64 36/71/ 40

=2 =2
36/-71/64 36/72/ 100
144/-72/

* *

Finally, we use cleave to add the new key-down velocities.

cleave -i ’'**MIDI, **metpos’ -o ’'**MIDI’ scale.tmp > scale.mid

The final output is:

**MIDI
*

*M4 /4
*tb8
=1-=1-
72/60/100

72/-60/64
36/-62/64
36/-64/64
36/-65/64
36/-67/64
36/-69/64
=2=2

36/-71/64

72/62/60
36/64/40
36/65/80
36/67/40
36/69/60
36/71/40

36/72/100

Moving Signifiers Between Spines Page 261

144/-72/

*

Creating Mixed Representations

For some analytic tasks it is often useful to generate a special representation that combines all of
the elements or types of data of interest to the researcher. For example, suppose we were working
on a model of melodic organization that reduced melodies to three types of information: relative-
duration context, gross pitch height, and scale step. Sample data tokens for our representation and
their meanings are given in the following table. Notice that the order of signifiers is important:

token meaning

LSLHto long-short-long rhythm, high pitch, tonic

LLSLsd long-long-short rhythm, low pitch, subdominant
MLSM1t medium-long-short rhythm, medium pitch, leading tone
r rest

In Chapter 22 we learned how to use recode to classify various numerical ranges and humsed to
classify non-numeric data. We already know how to create the elements of our new representa-
tion.

The scale degree information can be created by using deg and humsed can be used to transform
the signifiers as in the following degree file:

s/l.*/to/
s/2.*/st/
s/3.*/me/
s/4.*/sd/
s/5.*/do/
s/6.%/sm/
s/7.*/1t/

We can classify the pitch ranges into high, medium, and low using the semits command, followed
by recode. For example, we could transform the **semits data using the following reassign-
ment file:

<0 L
>16 'H
>=0 M
else r

Durations can be similarly classified into long (L), medium (M), and short (S) using the dur com-
mand, followed by recode.

>1.0 L
>0.5 M
>0 S

Page 262 Moving Signifiers Between Spines

Using context -n 3 we could then create contextual ‘triples’ so that data records contain three du-
rations. Suppose also that we have used sed to change the names of the exclusive interpretations
so they are more appropriate. As a result we have three spines that, when assembled together are
organized as in Example 26.1

Example 26.1
**rhythm **range **gcale-step
L SL H to
LLS L sd
ML S M 1t
r r r
* * *

We need to process the first spine with humsed again to eliminate the spaces in the multiple stops.
The rhythm spine would be processed as follows:

humsed ‘s/ //g’ rhythm > rhythm.new
We could assemble these spines using the assemble command:

assemble rhythm.new range scale.step > newfile
Finally we can use cleave to amalgamate all of the data into a single final spine.

cleave -i ’**rhythm, **range, **scale-step’ -o ’'**complex’ \
newfile > output

Having created our new representation, we can continue to process this new data with the various
Humdrum tools. For example, we could generate inventories that answer questions such as “How
often does a high subdominant note in a long-short-long rhythmic follow a low submediant in a
long-long-short context?

A similar approach can be used to address other questions, such as do large leaps involving chro-
matically-altered tones tend to have a longer duration on the altered tone? Etc.

Reprise

In this chapter we have seen how rend and cleave can be used to take bits and pieces of signifiers
from potentially many spines, and assemble a composite Humdrum spine that contains precisely
the information of interest. Before amalgamating spines, you can use the humsed command to
translate the characters/signifiers so that you use your preferred way of representing something.

