Chapter 24

The Shell (III)

In Chapter 16 we learned about the alias feature of the shell. The alias command allowed us to
create new commands by assigning a complex pipeline to a single-word command. In this chapter
we will learn how to use the shell to write more complex programs. Shell programs allow users to
reduce lengthy sequences of Humdrum commands to a single user-defined command.

Shell Programs

A shell program is simply a script consisting of one or more shell commands. Suppose we had a
complex procedure consisting of a number of commands and pipelines:

extract -i ’**Ursatz’ inputfile | humsed ‘/X/d’ \
| context -o Y -b z > Ursatz

extract -i ‘**Urlinie’ inputfile | humsed '/X/d’ \
| context -o Y -b z > Urlinie

assemble Ursatz Urlinie | rid -GLId | graph

In the above hypothetical script, we have processed an input file called inputfile. It may be
that this is a procedure we would like to apply to several different files. Rather than typing the
above command sequence for each file, an alternative is to place the above commands in a file.
Let’s assume that we put the above commands in a file called Schenker. In order to execute this
file as a shell script, we need to assign execute permissions to the file. We can do this by invoking
the UNIX chmod command.

chmod +$< Schenker

The +x option causes chmod to add execute permissions to the file Schenker. Using chmod we
can change modes related to executing a file, reading a file, and writing to a file. Possible mode
changes include the following:

+x add execute permission
-X deny execute permission
+r add read permission

-T deny read permission

Page 236 The Shell (111}

+w add write permission
-w deny write permission

Having added execute permissions to the file, we can now execute the shell script or program.
This is done simply by typing the name of the file; in effect, the filename becomes a new com-
mand:

Schenker

Each time we type this command, our script will be executed anew. Notice that in our script, the
final output has not been sent to a file. As a result, the output from our Schenker command will
be sent to the screen (standard output). It is convenient not to specify an output file in the script
since this is often something the user would like to specify. When typing our new command, we
can use file-redirection to place the output in a user-specified file:

Schenker > outputfile

As currently written, our program can be applied only to an input file whose name is literally in-
putfile. If we wanted to, we could edit our script and up-date the name of the input filename
every time we want to use the command. However, it would be more convenient to specify the in-
put filename on the command line — as we can do for other commands. For example, it would be
convenient to be able to type commands such as the following:

Schenker opusll8 > opusll8.out

In order to allow such a possibility, we can use a predefined feature of the shell. Whenever the
shell receives a command, each item of information on the command line is assigned to a shell
variable. The first item on the command line is assigned to the variable $0 (normally, this is the
command name). For example, in the above example, $0 is assigned the string value
“Schenker.” The variables $1, $2, $3, etc. are assigned to each successive item of information
on the command line. So in the above example, $1 is assigned the string value “opus118.”’

These shell variables can be accessed within the shell script itself. We need to revise the script so
that each occurrence of the input file is replaced by the variable $1:

extract -i ‘**Ursatz’ $1 | humsed '/X/d’ \
| context -o Y -b Z > Ursatz

extract -i ‘**Urlinie’ $1 | humsed ’/X/d’ \
| context -o Y -b Z > Urlinie

assemble Ursatz Urlinie | rid -GLId | graph

This change means that our Schenker command can be applied to any user-specified input file —
simply by typing the filename in the command.
Flow of Control: The if Statement

Suppose we wanted our Schenker command to apply only to tonal works — more specifically, to
works with a known key. Before processing a work, we might want to have Schenker test for the

The Shell (111) Page 237

presence of a tandem interpretation specifying the key.

Let’s begin by using grep to search for a key tandem interpretation. An appropriate grep com-
mand would be:

grep ’“*[A-Ga-g]l[#-]*:’ $1

Recall that we can assign the output of any command to a shell variable by placing the command
within back-quotes or greves, i.e. ‘...°. Let’s assign the key interpretation to the variable KEY:

KEY=‘grep ’'"“*[A-Ga-g][#-]*:’ $1°

If no key indicator is found by grep, then the variable KEY will be empty. We can test for this
condition using the shell if statement.

KEY='grep ’'"*[A-Ga-g][#-]1*:’ $1°

if ["SKEY" = "']

then
echo "Sorry, this input file has no key."
exit

fi

Notice that we use the dollars sign prior to the variable to mean “the contents of variable KEY™.
The double quotation marks allow a string comparison. Our test is whether the variable $KEY is
equivalent to the empty or null string "". If the test is true, then the commands following the
then statement are executed. By convention, these commands are indented for clarity. In the
above case, two commands are executed if the SKEY variable is empty. The echo command caus-
es the quoted string to be output. The exit command causes the script to terminate. Notice the
presence of the fi command (if backwards). This command simply indicates that the if-block has
ended.

Of course, if there is a key designation, then it is appropriate to execute the rest of our Schenker
script. The complete script would be as follows:

KEY=‘grep ’'~*[A-Ga-g][#-]1*:’ $1"

if ["SKEY" = ""]
then
echo "Sorry, this input file has no key."
exit
else
extract -i ‘**Ursatz’ $1 | humsed ‘/X/d’ \
| context -o Y -b 2z > Ursatz
extract -i ‘**Urlinie’ $1 | humsed '/X/d’ \
| context -o Y -b z > Urlinie
assemble Ursatz Urlinie | rid -GLId | graph
fi

Notice the addition of the else statement. The else statement delineates the block of commands to
be executed whenever the if condition fails — that is, when the $KEY variable does not equal the

Page 238 The Shell (I11I)

null string. Once again, to make the script more readable, we indent the commands contained in
the else-block.

The if command provides many other ways of testing some condition. For example, the shell pro-
vides ways to determine whether a file exists, and other features.

\

Flow of Control: The for Statement

In music research, a common task is to apply a particular process or script to a large number of
score files. By way of illustration, suppose we wanted to know the maximum number of notes in
any single folk melody in a collection of Czech folksongs. Suppose further that we are located in
a directory containing a large number of Czech folksongs named czechOl.krn,
czech02.krn, czech03.krn, and so on.

We would like to run the census -k command on each file separately, but we’d prefer not to type
the command for each score. The for statement provides a convenient way to do this. The follow-
ing commands might be typed directly at the shell:

for J in czech*.krn

> do

> census -k $J | grep ’‘Number of notes:’
> done | sort -n

The pattern czech* .krn will be expanded to all of the files in the current directory that it
matches. The variable J will take on each name in turn. The commands between do and done
will be executed for each value of the variable $J. That is, initially $J will have the value
czech01.krn. Having completed the do-done block of commands, the value of $J will become
czech02.krn, and the do-done block will be repeated. This will continue until the value of $J
has taken on all of teh possible matches for czech* . krn.

The output might appear as follows:

Number of notes: 31
Number of notes: 32
Number of notes: 32
Number of notes: 34
Number of notes: 35
Number of notes: 39
Number of notes: 39
Number of notes: 40
Number of notes: 48
Number of notes: 48
Number of notes: 55
Number of notes: 78
etc.

Incidentally, the output from a for construction such as above can be piped to further commands,
so we might identify the maximum number of notes in a Czech melody by piping the output

The Shell (II1) Page 239

through sort -n.

A Script for Identifying Transgressions of Voice-Leading

Shell programs can be of arbitrary complexity. Below is a shell program (dubbed leader) whose
purpose is to identify all instances of betrayals of nine classic rules of voice-leading for a two-part
input. A number of refinements have been added to the program — including input file checking,
and formatting of the output.

The program is invoked as follows:

leader <file>

The input is assumed to contain two voices, each in a separate * *kern spine. The nominally
lower voice should be in the first spine. For music containing more than two voices, the Humdrum
extract command should be used to select successive pairs of voices for processing by leader.

LEADER

#

A shell program to check for voice-leading infractions.

This command is invoked as:

#

leader <filename> :

.

where <filename> is assumed to be a file containing two voices, each
in a separate **kern spine, where the nominally lower voice is in the
first spine.

Before processing, ensure that a proper input file has been specified.
if [V -f 81]

then echo "leader: file $1 not found"

fi

exit

if [s# -eq 0]
then echo "leader: input file not specified"

fi

#

exit

1. Record the ranges for the two voices.

echo ‘Range for Upper voice:’

extract -f 2 $1 | census -k | egrep 'Highest|Lowest’ | sed ’'s/"/ /!
echo ‘Range for Lower voice:’
extract -f 1 $1 | census -k | egrep 'Highest|Lowest’ | sed ’'s/"/ /!

#

2. Check for augmented or diminished melodic intervals.

extract -f 1 $1 | mint -b r | sed '/\[[Ad][Ad]*\1/d’ | egrep -n '"["!*].*[Ad]["1]" |\

sed 's/:/ (/;s/$/)/;s/"/Augmented or diminished melodic interval at line: /'

extract -f 2 $1 | mint -b r | sed '/\[[Ad][Ad]*\]/d’ | egrep -n ‘~["!*].*[Ad]["1]’ |\

#

sed 's/:/ (/:s/8/)/;s/"/Augmented or diminished melodic interval at line: /'’

3. Check for consecutive fifths and octaves.

Page 240 The Shell (111)

echo 'P5’ > $TMPDIR/template; echo 'P5’ >> STMPDIR/template
hint -c $1 | patt -f $TMPDIR/template -s = | \

sed ‘s/ of file.*/./;s/.*Pattern/Consecutive fifth/’
echo ‘Pl’ > $TMPDIR/template; echo 'P1l’ >> $TMPDIR/template
hint -c $1 | patt -f $TMPDIR/template -s = | \

sed 's/ of file.*/./;s/.*Pattern/Consecutive octave/’

4. Check for doubling of the leading-tone.

deg $1 | extract -i ’'**deg’ | ditto -s = | sed 's/"=.%*/=/' | \
egrep -n ‘'"7.*¥7|"["1*].*¥7.*7' | egrep -v 'T{-+]' | \
sed 's/:.*/./;s/"/Leading-tone doubled at line: /'’

5. Check for unisons.
semits -x $1 | ditto -s = | \
awk ‘{if($0~/["0-9\t-]/)next}{if($1==$2) print "Unison at line: " NR}'

6. Check for the crossing of parts.
semits -x $1 | ditto -s = | sed 's/"=.*/=/' | \
awk ‘{if($07/["0-9\t-]1/)next}{if($1>$2) print "Crossed parts at line: " NR}'

7. Check for more than an octave between the two parts.
semits -x $1 | ditto -s = | awk ’{if($07/["0-9\t-1/)next} \
{if($2-$1>12) print "More than an octave between parts at line: " NR}'

8. Check for overlapping parts.
extract -f 2 $1 | sed 's/"=.*/./’ | context -n 2 -p 1 -d XXX | \
rid -GL | humsed ’'s/XXX.*//’ > $TMPDIR/upper
extract -f 1 $1 | sed ’'s/"=.*/./' > $TMPDIR/lower
assemble $TMPDIR/lower $TMPDIR/upper | semits -x | ditto | \
awk ' {if($0~/["0-9\t-]/)next}{if ($1>$2) print "Parts overlap at line: " NR}’
extract -f 1 $1 | sed ’‘s/"=.*/./" | context -n 2 -p 1 -d XXX | \
rid -GL | humsed ’'s/XXX.*//' > $TMPDIR/lower
extract -f 2 $1 | sed 's/"=.*/./' > $TMPDIR/upper
assemble $TMPDIR/lower $TMPDIR/upper | semits -x | ditto | \
awk ‘{if($0~/["0-9\t-1/)next}{if($1>$2) print "Parts overlap at line: " NR}'’

9. Check for exposed octaves.
hint -c¢ $1 > $TMPDIR/sl
extract -f 1 $1 | deg > $TMPDIR/s2
extract -f 2 $1 | deg > $TMPDIR/s3
extract -f 1 $1 | mint | humsed ’‘s/.*[3-9].*/leap/’ > $TMPDIR/s4
extract -f 2 $1 | mint | humsed ’‘s/.*[3-9].*/leap/’ > $TMPDIR/s5
assemble $TMPDIR/sl $TMPDIR/s2 $TMPDIR/s3 $TMPDIR/s4 $TMPDIR/s5 > $TMPDIR/temp
egrep -n ‘P1l.*\".*\" . *leap.*leap|Pl.*v.*v.*leap.*leap’ $TMPDIR/temp Y
sed 's/:.*/./;s/"/Exposed octave at line: /'

Clean-up some temporary files.
rm $TMPDIR/template $TMPDIR/upper $TMPDIR/lower S$STMPDIR/s[1-5] $TMPDIR/temp
Reprise

In this chapter we have illustrated how to package complex Humdrum command scripts into shell
programs. This allows us to create special-purpose commands. We learned that files can be trans-

The Shell (111) Page 241

formed into executable scripts through the chmod command. We also learned how to pass param-
eters from the command line to the script, and how to assign and modify the contents of variables.
In addition, we learned how to influence the flow of control using the if and for statements. Final-
ly, we learned that multi-line scripts can be typed directly at the command line without creating a
script file.

Shell scripts can be very brief or very long. It is possible to create scripts that carry out highly so-
phisticated processing such as searching for voice-leading transgressions. There are innumerable
features to shell programming that have not been touched-on in this chapter. Several books are
available that provide comprehensive tutorials for shell programming.

