Chapter 21

Searching for Patterns

The grep and egrep commands are useful for identifying patterns that occur on single lines. As
we saw in Chapter 19, the context command can be used to amalgamate groups of successive data
tokens on a single line — and so facilitate searching for sequential patterns using grep or egrep.
For many tasks, the combination of context and grep provides the most convenient way to search
for user-specified patterns. However, not all patterns can be conveniently identified using this ap-
proach. In this chapter we will introduce two additional tools that are intended to search directly
for sequential patterns without having to use context to create pseudo-simultaneous collections.

The patt Command

The patt command may be regarded as a two-dimensional version of grep. Like grep, patt
searches for lines that match user-specified regular expressions. However, unlike grep, patt can
search for a sequence of records that match a sequence of user-specified regular expressions.
Specifically, patt will look for an input line that matches the first (of potential many) user-speci-
fied regular expression. Then patt will determine whether the following input line matches the
second user-specified regular expression ... and so on, until the entire sequence of the user-speci-
fied regular expressions are exhausted. A pattern match is deemed to occur only if all of the suc-
cessive regular expressions match a contiguous sequence of input lines.

The operation of patt is easier to describe through an example. Consider the following input using
the German Tonhdhe pitch designations described in Chapter 4. Recall that the **Tonh system of
pitch names allows Bach to spell his name (B=B-flat; H=B-natural). Less well-known is the fact
that Dmitri Shostakovich also used the German pitch system to create motives based on his name:
D-S-C-H (S=Es=E-flat). (The German transliteration of the cyrillic is Schostakowitsch.)

**Tonh
D4

Es4d

c4

H3

* _
Suppose we were looking for possible instances of D-S-C-H. The patt command requires a tem-
plate file that contains one or more successive regular expressions. A suitable template file (named
dmitri) would be as follows:

Page 202 Searching for Patterns

D
Es
C
H
We would invoke the search as follows:
patt -f dmitri inputfile

The -f option is mandatory: it conveys to patt the name of the template file used in the search.

In the default operation, patt simply outputs a global comment identifying the location of any
matching segments. One global comment is output for each matching pattern. In the above case,
the output would be as follows:

't Pattern found at line 2 of file Tonh

The patt command will also identify any overlapping patterns. For example, suppose we had an
input containing an ostinato figure in minor thirds:

Example 21.1. ‘DSCH’ Ostinato.

**Tonh **Tonh Q.L

*k[b-e-] *K[b-e-] Agéb B B " — " F———
*M9/8 *M9/8 o T‘t‘ﬁ#‘!_i_d_t—d—#—
=1- =1- ’
c4 Es4

C4 Esd

H3 D4

c4 Esd

c4 Es4

H3 D4

Cc4 Es4

c4 Es4

H3 D4

If we applied the above patt command to this ostinato file, we would get the following output:

't Pattern found at line 8 of file ostinato
11 Pattern found at line 11 of file ostinato

We can instruct patt to output specific instances of the pattern using the -e (echo) option. Consid-
er the following command:

patt -f dmitri -e ostinato

The resulting output would be:

Searching for Patterns Page 203

'l Pattern found at line 4 of file ostinato

**Tonh **Tonh
H3 D4

c4 Es4

c4 Es4

H3 D4

* _ *

!l Pattern found at line 7 of file ostinato
**Tonh **Tonh
H3 D4

c4 Es4

c4 Es4

H3 D4

* *

Notice that each instance of the found pattern is output as a stand-alone humdrum “mini-encod-
ing,” complete with initial exclusive interpretations and terminating spine-path terminators.

Example 21.2. J.S. Bach, Well-Tempered Clavier, Vol. 1, Fugue 2.

] —e=] - =
7 hi;7ﬁ7
= s
\ /

Most Baroque composers were tond ot ending works written in minor keys on the tonic major
chord — the so-called rierce de picardie or Picardy Third. Example 21.2 shows a typical example
from the final measures of Bach’s second fugue from the Well-Tempered Clavier, vol. 1. Suppose
that we wanted to identify all works in some repertory that end with a tierce de picardie. We need
to search for a raised third scale degree in close proximity to the end of a work for those works in a
minor key. First we might identify those works in minor keys. The following grep command will
search all files in the current directory for a tandem interpretation indicating a minor key. Recall
that minor keys are identified by an asterisk followed by a lower-case pitch-letter name, followed
by an optional accidental, followed by the colon character. The -1 option will list all files that con-
taining a matching record:

grep -1 '“*[a-g][-#]*:" *

Recall that the deg command is mode sensitive, whereas the solfa command is mode insensitive.
That is, in the key of C major, deg will represent the pitch E as 3 and in C minor deg will repre-
sent the pitch E (natural) as 3+. By contrast, the solfa command will represent E as ‘mi’ whether

the mode is major or minor.

In order to locate picardy thirds, we can look for raised mediants in the **deg representation.
Specifically, we can look for a raised mediant pitch immediately prior to a double barline. Our
template file (dubbed “picardy”) might look as follows:

Page 204 Searching for Patterns

3[+]

Notice that the plus sign has been placed in square brackets. The patt command accepts only ex-
tended regular expressions. The plus sign is a metacharacter that normally indicates “one or more
instances.” So placing it in square brackets causes the special meaning to be escaped.

In order to search for such picardy thirds, we should translate each input file to the **deg repre-
sentation, and then search for raised mediants immediately prior to a double bar:

deg inputfilekrn | patt -f picardy
A problem with this search strategy is that it assumes that the raised third will occur in the final

sonority prior to the double barline. One possible confound might be the presence of one or more
rests following the final chord. This situation is evident in Fugue No. 4 from the second volume of

Bach’s Well-Tempered Clavier:

Example 21.3. J.S. Bach, Well-Tempered Clavier, Vol. 2, Fugue 4.

\ A ye 2.
- lli. AN
e o YK r A0
ﬂp / <
T
:gtﬁﬁgzzqzz;:F::F=$=3 " o y 20
| 1 J Py
vd T 1 3 I 10 | ‘q. d' \' -
——t &

{11COM: Bach, Johann Sebastian
!11XEN: The Well-Tempered Clavier, Volume 2, Fugue 4.

**kern **kern **kern
*clefF4 *clefG2 *clefG2
*M12/16 *M12/16 *M12/16
*k[fH#cH#g#d#] *k[f#cH#g#d#] *k[f#HcHg#d#]
*C#H: *c#: *c#:
=70 =70 =70
16E 8.f#] 8b#
16D#% . .
16E . lé6g#
16FF## 8e 4.cc#
16GGH# .
16AAN le6d#
4.GG# l6e
1l6a
l6g# .
l6f# 8.b#
l6e
. 164# .
=71 =71 =71

8.CC# 8.e# 8.cc#

Searching for Patterns Page 205

8.r 8.r 8.r
4.r 4.r 4.r
* * *

The patt command provides a -s option that allows the user to skip or ignore certain records in the
input. Any regular expression can be given as a parameter for the -s option. In the following
pipeline, we have instruction patt to skip over any records matching the lower-case letter ‘r’ (the
**kern rest signifier):

deg inputfilekrn | patt -s r -f picardy

Even ignoring rests may not be sufficient to identify the raised third near the double barline. For
example, if any other note from the tonic chord follows after the raised third, then the third will
appear several records prior to the double barline. We can solve this problem by using the ditto
command discussed in Chapter 15; ditto can be used to propagate the raised third through the sus-
tained final chord. Our revised pipeline is:

deg bach.krn | ditto -s = | patt -s r -f picardy

A similar approach can be used to identify consecutive fifths or octaves between two voices. A
template file (dubbed 5ths) might consist of the following pattern:

P5
P5

In order to identify consecutive fifths, we might extract two parts of interest, and then translate to
the **hint harmonic-interval representation. The -¢ option for hint collapses compound intervals
to their non-compound equivalents so consecutive twelfths, nineteenths, etc. will also be identified.
In the following command pipeline, notice the use of the -s option for patt in order to skip bar-
lines. This ensures that crossing a barline does not result in a failure to identify a consecutive fifth.

extract -i ‘*Ibass,*Itenor’ Fux | hint -c | patt -s = -f 5ths

Sometimes patterns will tend to be obscured by the presence of other information. For example,
suppose we want to identify possible Landini cadences such as the cadence shown in Example
21.4. Landini cadences are common in much 14th century polyphony including works by
Machaut, Caserta, Dufay, Ciconia, as well as Landini. One characteristic of the Landini cadence is
the distinctive three-note ti — la — do in the upper-most part. The submediant pitch is interposed
between the leading-tone and the tonic. A second characteristic of the Landini cadence is the har-
monic relationship between the highest and lowest voices. Three intervals are formed: sixth —
fifth = octave. Either one or both of these characteristics might be used to help identify this dis-
tinctive cadential formula.

Searching for Patterns

Example 21.4. Francesco Landini, Excerpt from Non avra ma’ pieta.

—pt——] - — - i
H 1 K | N : ! : 1 11 1 A l.
mjﬂjj—d-‘—d == — jiﬂ:L—-——,P——é
0 \
p A L3] I " N A
y ANEK)) | 1 1 1 17 1 1\ 1 1 I
s g1 !
=4 “_i >3 (X3
o £ o, be .
~J-F 1 1 1 1] r 4 1 1 1 i
! 7 L— } I]
6 5 8

Below is a **kern encoding of the final two measures along with corresponding **hint and **deg
spines. The **hint spine was generated ‘using hint -1 in order to generate intervals with respect to

the lowest pitch.

'11COM: Landini, Francesco
**kern **kern **kern **hint **deg **deg **deg

*clefF4 *clefG2 *clefG2 * * *
*M3/4 *M3/4 *M3/4 *M3/4 *M3/4 *M3/4 *M3/4

4A de 8e P5 P5 v2 v6 6
. . 8f - . . ~7-
4B- 44 8g M3 M6 ~3- v5 1
. . 4f# - . . v7
4A dc# . M3 v2 va+ .
8e v6
2.G 2.4 2.9 P5 P8 vl "5 1
* * _ *: * _ * _ — *

Notice that hint has failed to generate the passing interval forming the perfect fifth between the E
and the A. This can be remedied by using ditto to duplicate all of the pitches. This will cause
hint to generate all of the passing harmonic intervals. The revised **hint spine is given below.

111COM: Landini, Francesco
**kern **kern **kern **hint **deg **deg **deg

*clefF4 *clefG2 *clefG2 * * *
*M3/4 *M3/4 *M3/4 *M3/4 *M3/4 *M3/4 *M3/4

4A de 8e P5 PS5 v2 v6 6
. . 8f P5 mé6 . . ~T7-
4B- 44 8g M3 M6 “3- v5 "1
. . 4f# M3 A5 . . v'7
4A dc# . M3 M6 v2 vi+

8e M3 P5 . . v6

Searching for Patterns Page 207

2.G 2.d 2.9 P5 P8 vl "5 "1

One way to identify Landini cadences is to use the following harmonic-interval template file
(dubbed LandCadence):

6
5
8

Using this template, we can identify Landini cadences as follows. (Notice the use of -s "= to skip
barlines.)

~

ditto -s "= input | hint -1 | patt -s "= -f LandCadence

It is possible that the 6-5-8 figured bass might arise in non-cadential situations, so a more circum-
spect template might also include some scale-degree movements as well. The following template
file (dubbed Landini-Cadence) combines both the harmonic-interval and scale-degree data:

[Mm] 6
P5.*v6
P8.*\"1

Using this more sophisticated pattern template, a suitable sequence of commands would be the fol-
lowing:

ditto -s "= inputfile | hint -1 > templ
deg inputfile > temp2 '
assemble templ temp2 | patt -s "= -f Landini-Cadence

In general, patt templates can be used to specify both concurrent conditions as well as dynamic or
temporal conditions. This allows users to define patterns involving a multitude of conditions in-
volving many different types of data.

Using patt’s Tag Option

So far, we have seen that patt provides two kinds of output. In the default operation, patt outputs
a simple global comment each time it finds a matching segment in the input. With the -e option,
patt will also echo the specific passage(s) found. In addition, patt provides a third type of output
using the -t option.

When the -t option is invoked, patt will output the original input, plus an addition **patt spine.
The **patt spine typically consists of mostly null tokens. However, each time the input match-
es the sought pattern, a user-defined “tag” will appear in the **patt spine. Consider the follow-

ing example.

Suppose we are interested in identifying deceptive cadences in Bach’s chorale harmonizations.

Page 208 Searching for Patterns

Imagine that we already have a **harm spine containing a Roman numeral harmonic analysis.
There are different ways of defining a deceptive cadence, but a frequent definition is that it in-
volves a dominant chord followed by a submediant chord in a cadential context. In the case of
Bach’s chorale harmonizations, cadences are readily identified by the pause symbol. Our search
template might look as follows:

VILTIDS)
(vi) | (VI);

This template means: “look for an upper-case letter V appearing at the beginning of a line that is
followed by either the end of the line ($) or by a character other than the upper-case letter I. This
record will be followed by a record containing either vi or VI followed by a semicolon.”

When invoking the patt command, we can specify our preferred output tag along with the -t op-
tion as follows:

extract -i ‘**harm’ bwv269.krn | patt -f template -t deceptive

**harm **patt
I

I

ii7 .

v deceptive
vi;

\Y

I

Iv

IV

I

V;

etc.

In Chapter 26 we will learn how to collapse several spines into a single spine. This will allow us
to assemble the results from several “passes” using patt — one pass for each type of cadence. For
example, we could collapse several tagged outputs to produce a single spine that identifies all of
the various types of cadences:

**harm **cadences
I

I

ii7

\Y deceptive
vi;

A\

I

Y

IV .

I half

Searching for Patterns

V:
etc.

There are no restrictions as to the types of tags that can be generated by patt. A user might tag the
beginning of motivic or thematic statements, various harmonic progressions, variation techniques,
fingering patterns, quotations or allusions, stylistic clichés, etc. In Chapter 35 we will use the -t
option to label different set forms for statements of a twelve-tone row, such as primes, inversions,
retrogrades, and retrograde inversions. We will use suitable tags to identify the specific transposi-
tions: PO, I7, R11, RIS, etc.

Matching Multiple Records Using the paft Command

Twelve-tone music raises several special issues for sequential pattern matching. For example, it is
common in serial music to collapse segments of a tone-row in order to create vertical chords.
Consider the following excerpt from Ernst Krenek’s suite for solo cello. The tone row consists of
the ordered pitches: D, G-flat, F, D-flat, C, B, E-flat, A, B-flat, A-flat, E, G.

Example 21.5. Ernst Krenek, Opus 84 Suite for Violoncello; mov. 1, measures 28-30.

] z .z
]] 1 Le thE |E
v T I 17 1 I 1 L4 T 1 7 2
w—bd' A —— 1 T T }
Z4 — e b — T 5
v Y v .

Using a pitch-class representation we would search for the sequence:

N O OVWREORON
oy

Due to the diads, however, the corresponding pitch-class representation for the above Krenek pas-
sage would be:

*pe

*
2
6
51
0

Page 210 Searching for Patterns

3 11

10
10 8

7 4
etc.

The -m option for patt invokes a “multi-record matching” mode. In this mode, patt attempts to
match as many successive regular expressions in the template file as possible for a given input
record, before continuing with the next input and template records. In this way, several records in
the template file may possibly match a single input record. In the above case, the tone-row tem-
plate will be matched and the ‘PO’ tag issued if the following command is issued:

patt -f tonerow -t PO -m Krenek

The pattern Command

Not all patterns can be identified using The Humdrum pattern command permits an additional
regular expression feature that is especially useful in musical applications. Specifically, pattern
permits the defining of patterns spanning more than one line or record. Record-repetition opera-
tors are specified by following the regular expression with a tab — followed by either +, *, or 2.
For example, consider the following Humdrum-extension regular expression:

X
v *
Z ?

When the metacharacters +, *, or ? appear at the end of a record, preceded by a tab character, they
pertain to the number of records, rather than the number of repetitions of the expression within a
record. The first record of the regular expression (X<tab>+) will match one or more successive
lines each containing the letter ‘X’. The second record of the regular expression (Y<tab>*) will
match zero or more subsequent lines containing the letter “Y’. The third record of the regular ex-
pression (Z<tab>?) will match zero or one line containing the letter ‘Z’. Hence, the above multi-
record regular expression would match an input such as the following: three successive lines con-
taining the letter ‘X’, followed by eight successive lines containing the letter ‘Y’, followed by a
single line containing the letter ‘Z’. Similarly, the above regular expression would match an input
containing one line containing the letter ‘X’.

Record-repetition operators can be used in conjunction with all of the other regular expression fea-
tures. For example, the following regular expression matches one or more successive * *kern da-
ta records containing the pitch ‘G’ (naturals only) followed optionally by a single ‘G#’ followed by
one or more records containing one or more pitches from an A major triad — the last of which

must end a phrase:

[Ggl+["#-] +
[Ggl+#["#] ?

Searching for Patterns Page 211

([Ral+| ([Ccl+#) | [Eel+) ["#-]1*
(}.*([Ral+]| ([Ccl+#) | [Eel+) ["#-1)) | (([Ral+]| ([Ccl+#) | [Eel+) ["#-]1.*})

Patterns of Patterns

Music often exhibits hierarchical structures where particular types of patterns may be embedded in
other patterns, or where low-level patterns join together to form higher-level patterns. As we have
seen, the -t (tag) option for the patt command allows a new output spine to be generated. This
spine contains user-defined labels marking the beginning of each found pattern. The labels can
contain any user-defined text string such as authentic cadence, episode, Motive 3b, aug-
mentation, triplet figuration, or prolongation.

As we will see in Chapter 26, the contents of several spines can be amalgamated to form a single
spine. This means that the results for several independent pattern searches can be assembled into a
single “pattern” spine. Several pattern spines may be created that related to patterns found at dif-
ferent hierarchical levels, or patterns found using different search methods. Of course, these pat-
tern-spines themselves can be used as input to further pattern searches thus providing unbounded
possibilities for searching for patterns of patterns.

Consider, for example, the following template for the pattern command:

Theme 1 (tonic) +
Bridge *
Theme 2 (tonic) +
Coda ?

The template reads “one or more instances of Theme 1 (tonic), followed by zero or more in-
stances of Bridge, followed by one or more instances of Theme 2 (tonic), followed by zero
or one instance of Coda.” This template might be used by pattern to identify a Recapitulation.
Together with outputs from parallel searches for ‘Exposition’ and ‘Development’ the results of a
‘Recapitulation’ search might similarly be amalgamated and used as an input for a higher level
search for works exhibiting a sonata-allegro structure. '

Reprise

In this chapter and previous chapters we have identified several search-related tools, including the
UNIX grep and egrep commands as well as the Humdrum patt and pattern commands. Each of
these tools has different strengths and weaknesses and it is not always clear which tool is best for a
given task. When searching, don’t forget to consider how context, humsed, rid and other tools
might facilitate the searching task. In future chapters will will consider how “similarity” tools
such as correl and simil can contribute to more sophisticated pattern searches.

