Chapter 20

Strophes, Verses and Repeats

We often tend to think of musical information as a linear stream of successive events. However,
there are many circumstances where musical information exhibits more complex structures. These
include such structural devices as repeats, da capos, first and second ending, multiple verses, alter-
native or ossia passages, different performance renditions, divergent sources, and competing edi-
tions or versions.

This chapter describes the basic Humdrum mechanisms for representing non-linear musical struc-
tures. The two critical mechanisms are the Humdrum section and strophe. We will encounter ex-
amples using the yank, thru, and strophe commands.

Section Labels

Musical scores are often notated to take advantage of repetitions in the music. Devices such as re-
peat marks, Da Capo, Dal Segno, Codas, and other mechanisms make it possible to represent a
musical work in an abbreviated format. Humdrum provides corresponding mechanisms that allow
works to be represented in succinct ways.

Humdrum files may be logically divided into segments or passages by encoding Humdrum section
labels. A section label is a type of tandem interpretation that consists of a single asterisk, followed
by a greater-than sign, followed by a keyword that labels the section. The following are examples

of section labels.

*>Coda

*>1st Ending

*>Refrain
*>Exposition>2nd Theme

Notice that spaces can appear in section labels — as in 1st Ending. Sections begin with a sec-
tion label and generally end when another section label is encountered. Sections also end whenev-
er all spines are assigned new exclusive interpretations, or all spines terminate. If there is more
than one spine present in a passage, identical section labels must appear concurrently in all spines.

Page 192 Strophes, Verses and Repeats

Expansion Lists

Rather than encode multiple copies of a passage, a single instance may be encoded and labelled as
a section. The complete version of the work can be reconstructed by referring to an expansion list.
An expansion list is another tandem interpretation that contains an ordered list of section labels.
The list is specified in square brackets. Like section labels, expansion lists begin with an asterisk
followed by a greater-than sign. In effect, the expansion list indicates how the abbreviated file
should be expanded to a full-length encoding. Consider the following expansion list:

*>[versel,refrain,verse2,refrain]

This list indicates that the abbreviated file contains (at least) three sections, labelled “versel,”
“verse2” and “refrain.” When the file is expanded, the “refrain” section should be repeated

following each verse.

Using yank to Extract Sections

We encountered the yank command earlier in Chapter 12. Recall that yank can be used to extract
material by section using the -s option. For example, if the appropriate section is labelled, we
might extract the coda of a work as follows:

yank -s Coda -r 1 file

Recall that the -r option is manditory with yank; in this case, it identifies the first occurrence of a
section labelled Coda.

Using the thru Command to Expand Encodings

The Humdrum thru command expands abbreviated format representations to a so-called through-
composed format in which repeated passages are expanded according to an expansion list. When
the thru command is invoked, it eliminates any expansion lists present in the input; in addition,
thru places a *thru tandem interpretation in all spines immediately following each instance of an
exclusive interpretation in the input. This marks the file as being in a through-composed format.
Any other *thru tandem interpretations encountered in the input are subsequently discarded. As
a result, running a file through thru twice will not result in further changes to the file.

Alternative Versions

For works encoded in an abbreviated format, it is not always useful to expand it according to a sin-
gle fixed recipe. Depending on the performance practice, individual performer, or edition, certain
repeats may be avoided, passages may be added, or material eliminated altogether. In short, sever-
al different versions or interpretations of the overall organization of a work may exist.

Humdrum provides a mechanism by which several alternative versions of the overall organization
of a work may co-exist in the same file. This is achieved simply by encoding more than one ex-
pansion list. In order to distinguish different versions, each expansion list is given a unique ver-

Strophes, Verses and Repeats Page 193

sion label. Consider the following expansion lists:

*>Gouldl982[A, A, B]
*>Landowska[A, A, B, B]

Here we see two expansion lists, one carries the version label Gou1d1982 and the other is labelled
version Landowska. These expansion lists might encode different interpretations of the repeats in
a rounded binary form — Landowska performed the second repeat whereas Gould (1982) did not.
When the thru command is invoked, the user can specify which version is intended using the -v
option. The appropriate through-composed expansion will be output.

The following example illustrates the use of the thru command in selecting particular versions of
data in a file. Three sections are encoded in the file — labelled A, B and C. Each section in this
example contains just a single data record. Three expansion lists are encoded: one is unlabelled, a
second is labelled 1long and a third is labelled weird.

**example **example
*>[A,B,A,C] *>[A,B,A,C]
*>long[A,A,B,A,C] *>1long[A,A,B,A,C)
*>weird|[C,A,C] *>weird[C,A,C]

*>A *>A
data-A data-A
*>B *>B
data-B data-B
*>C *>C
data-C data-C
* *

Consider the following command:
thru -v weird file

The corresponding “through-composed” output would be as follows:

**example **example

*thru *thru
*>C *>C
data-C data-C
*>A *>A
data-a data-A
*>C *>C
data-C data-C
* *

Notice that all expansion-list records have been eliminated from the output. A *thru tandem in-
terpretation has been added to all output spines immediately following the exclusive interpretation.
Also notice that there are now two sections in the output sharing the same label (*>C). This dupli-
cation of section-labels is not permitted in abbreviated-format encodings and can only occur in

through-composed documents.

Without the -v option, thru expands the abbreviated file according to the unlabelled (default) ex-

Page 194 Strophes, Verses and Repeats

pansion list. So the following command would result in an output cohsisting of section A, fol-
lowed by section B, followed by section A (again), followed by section C:

thru file

Section Types

Suppose we had two different theorists — Smith and Jones — who had analyzed the same work
differently. Smith thinks there are basically two sections in the work, whereas Jones argues that
there are essentially three sections. Humdrum permits alternative schemes of section labels to co-
exist in a file by allowing the user to designate section fypes. A section label is considered to have
a “type” when more than one greater-than sign (>) is present in the label. Consider the following
example of sections defined by Smith and Jones:

**Example
*>Smith>A
*>Jones>A
datal
*>Jones>B
data2
*>Smith>B
data3
*>Jones>C

datad
*

Both Smith and Jones label the work as beginning with section ‘A’. Later Jones’s ‘B’ section be-
gins; then Smith’s ‘B’ section; then Jones’s ‘C’ section. Note that Smith’s ‘B’ section also con-
tains the material Jones has identified as section ‘C’.

Normally, the yank command extracts a labelled section up to the next occurrence of a section la-
bel. However, the -t option causes yank to ignore all section labels except for a specified type.
We could extract Smith’s ‘B’ section by using the -t option to limit extraction to “Smith”-type sec-

tion labels:
yank -t Smith -s B

This command would produce the following output:

**Example
*>8mith>B
data3

*>Jones>C

datad
&

Without the -t option, yank will simply extract material up to the occurrence of the next section la-
bel. Note that section types can be used to define innumerable alternative organizations for a sin-

gle document.

Strophes, Verses and Repeats Page 195

Hierarchical Sections

For many applications, it is useful to define “nested” structures where two or more sections form
part of a larger section. Humdrum section labels allow users to distinguish hierarchical levels.
Levels are indicated by the number of greater-than signs following the section type. Consider the
following:

**Example
*>Form>Exposition
datal

*>Form>>1st Theme
data2

*>Form>>2nd Theme
data3
*>Form>Development
datad
*>Form>Recapitulation
*>Form>>1st Theme
dataS

*>Form>>2nd Theme
data6

*>Form>Coda

data7

*_

All of the above section labels are identified as type Form. However, two levels are distinguished
(denoted by > and >>). Subsections are specified by increasing the number of greater-than signs,
hence 2nd Theme is a subsection. When yank is invoked, it will extract the identified section up
to the next section of comparable level. The operation is illustrated in the following sample com-
mands: indicating the first and second themes.

yvank -t Form -s ’‘lst Theme’ -r 1 (extracts up to >Form>>2nd Theme)

yvank -t Form -s ‘2nd Theme’ -r 1 (extracts up to >Form>Development)
vank -t Form -s ’'Exposition’ -r 1 (extracts up to >Form>Development)

For example, the second theme from the recapitulation can be extracted as follows:
yvank -t Form -s ‘2nd Theme’ -r 2

Alternatively:

yank -t Form -s Recapitulation file | yank -t Form -s ‘2nd Theme’ -r 1

Using the yank and thru Commands

Section labels can be used in a wide number of applications. By way of illustration, here are a few
pipeline processes involving section labels. First, we might ask the question — how does the user
know what sections labels are present in a document? This is a task for grep:

Page 196 Strophes, Verses and Repeats

grep ‘“*>’ file

This command will also output any expansion-lists. If we want to restrict our output to identifying
which versions are available for a document we would look for the presence of square brackets:

grep ‘"*>.*\[.*\]"’ file
How many notes are there in the exposition?

yank -t Form -s Exposition -r 1 file | census
How many phrases are there in the development?

yank -t Form -s Development -r 1 file | grep -c ' {’
Extract the figured bass for the third recitative:

yank -s Recitativo -r 3 file | extract -i ‘**B-num’

Compare the estimated key for the second theme in the exposition versus the estimated key for the
second theme in the recapitulation:

yvank -t Form -s ‘2nd Theme’ -r 1 file | key
yank -t Form -s ’‘2nd Theme’ -r 2 file | key

Determine the nominal (non-rubato) duration of Gould’s performance of the work:

thru -v Gould1982 file | extract -i ’**kern’ | extract -f£ 1 \
| dur -d | rid -GLId | grep -v '"=’ | stats | grep -i total

Perform the first three measures from the second section of a binary form:

yank -s B file | yank -0 = -r 1-3 | midi | perform

Strophic Representations

Section labels and versions allow Humdrum users to select alternative groups of (horizontal)
records within a Humdrum file or document. In other circumstances it is useful to be able to select
alternative (vertical) paths within a file. Strophic representations may be conceived as “alternative
concurrent paths” through a Humdrum document. Examples of alternative concurrent representa-
tion paths might include (1) texts for different verses of a song, (2) alternative renditions of the
same passage (such as ossia passages), or (3) differing editorial interpretations of a given note or
sequence of notes.

Structurally, strophic data must begin from a single common spine, split apart into two or more al-
ternative spines, and then rejoin to form a single spine. Since the strophes split from a common
spine, they all necessarily begin by sharing the same exclusive interpretation. Different exclusive
interpretations may be introduced in the strophic passage — provided all strophic spines end up

Strophes, Verses and Repeats

sharing the same data type just prior to being rejoined.

Page 197

The beginning of a strophic passage is signalled by the presence of a strophic passage initiator —
a single asterisk followed by the keyword “strophe” (*strophe). The end of a strophic passage is
signalled by the strophic passage terminator — a single asterisk followed by the upper-case letter
‘S’ followed by a minus sign (*S-). Each spine within the strophic passage begins with a strophe
label and ends with a strophe end indicator (*S/£in). Strophe labels may consist of either al-
phanumeric names, or numbers. Numerical labels should be used when the strophic data imply
some sort of order, such as verses in a song. Alphanumeric labels are convenient for distinguish-
ing different editions or ossia passages. The following example encodes a melodic phrase contain-

ing four numbered verses from “Das Wandern” from Die Schoene Muellerin by Schubert:

'l Franz Schubert,

**kern

*k [b-e-]

*
*>[1,1,1,1]
*>7

*

*

*

*

8f

8f
8b-

**gilbe
*Deutsch
*solo
*>[1,1,1,1]
*>1
*strophe
A

oA

*S/1

Das

*S/3
Das

sehn
wir
auch
den

ab,
den

R&-

dern!

*S/fin
*

‘Das Wandern’ from "Die Schoene Muellerin"

*S/4
Die

=5
Stei-
-ne
selbst,
so

Notice that this file contains a single section labelled ‘1’ and that an expansion list occurs near the

beginning of the file that indicates section 1 is to be repeated 4 times in total.

The strophic passage pertains only to the spine marked **silbe. The **silbe representation
pertains to syllabic text encoding and is a pre-defined representation in Humdrum. The **silbe

Page 198 Strophes, Verses and Repeats

representation is discussed in Chapter 27. Following the strophic passage indicator (*strophe),
the spine is split apart until the required number of verses are generated. Then each spine is la-
belled with its own strophe label. Since the verses have an order, it is appropriate to label them
with numbers: *S/1, *S/2, and so on. The individual verses are terminated with strophe end
indicators (*S/fin), the spines rejoin, and then a strophic passage terminator (*S-) marks the end
of the strophic passage.

The strophe Command

The Humdrum strophe command can be used to isolate or extract selective strophic data. The -x
option for strophe allows the user to extract a particular labelled strophe. Consider, for example
the effect of the following command:

strophe -x 3 schubert

Using the above data, the result is:

'} Franz Schubert, ‘Das Wandern’ from "Die Schoene Muellerin'

**kern **silbe
*k[b-e-] *Deutsch
*>[1,1,1,1] *>[1,1,1,1]
* *solo
*>71 *>71

8f Das

8f sehn
8b- wir

8a auch
8ee- den
(164dd RE-
16£f£) |

(16dd -dern
16b-) t

8f ab,

8dd den
(8.cc R&-
16a) |

8b- dern!
8r %

* L.

Notice that all of the tandem interpretations related to the strophe organization are eliminated from
the output.

Suppose that we wanted to create a through-composed version of the entire work. We would ex-
pect as output, just two spines — the **kern spine and the **silbe spine. First, we need to cre-
ate the full length version using the thru command. This will take the default expansion list, and

Strophes, Verses and Repeats Page 199

repeat the appropriate section for each successive verse.
thru schubert

The effect of this will be to simply repeat section 1 four times. However, each repetition will con-
tain all four verses. We can use the strophe command to eliminate the unwanted verse texts at
each verse. When no option is given, strophe operates by preserving strophes in numerical order.
That is, when it encounters the first strophic section it will preserve strophe #1 (*S/1); then when
it encounters the next strophic section it will preserve strophe #2 (*S/2). And so on. In summary,
the follow command will create a proper through-composed rendition of the Schubert lieder illus-
trated above.

thru schubert | strophe

Incidentally, the input passage need not necessary begin with strophe #1. The strophe command
will adapt to the input, and use the lowest previously unencountered strophe number.

' Using the strophe and thru Commands

As noted, the strophe technique can be used to encode different editorial interpretations of a single
work. Suppose for example that we had two editions of the Bach chorale harmonizations: Erk and
Reimenschneider. We could select the Erk edition as follows:

strophe -x Erk choralel66

In a strophic song, suppose we would like to compare the number of syllables in the first and sec-
ond verses. We begin by selecting the appropriate verse, extract the syllable spine, eliminate all
non-data records, eliminate any other special signifiers (like barlines), and finally count the num-
ber of remaining records. We repeat this procedure for both verses:

strophe -x 1 file | extract -i ’**silbe’ | rid -GLId \
| grep -v [=\[%] | wc -1

strophe -x 2 file | extract -i ‘**silbe’ | rid -GLIA \
| grep -v [=\]%] | wc -1

(In the **silbe representation, the vertical bar (|) and the percent sign (%) have special meanings
so the grep -v is used to eliminate them along with barlines.)

Reprise

Between stophes and sections, highly non-linear musical documents can be constructed. We have
seen how section labels can be defined, how lists of sections (“expansion lists”) can be constructed
and expanded to through-composed formats using the thru command. An unlabelled expansion
list is the default version. Other versions have labelled expansion lists.

Several different rypes of section labels can coexist in the same document and the yank command
can be instructed to ignore all sections other than a certain type via the -t option.

Page 200 Strophes, Verses and Repeats

The basic ideas introduced in this chapter are summarized in the following table.

section passage defined by a section label, ends with occurrence of
section label of identical level

section label tandem interpretation beginning: *> and not containing
square brackets

section type first part of section label: *>type>

expansion list tandem interpretation beginning *> and containing a list of
section labels in square brackets, e.g. *>[A, B, A]

version a labelled expansion list, e.g. *>ternary[A,B,A]

level hierarchical level of a section, designed by the number of >’

following the section type, e.g. *>type>>>name is lower
than *>type>name

abbreviated format Humdrum document encoded using expansion lists

through-composed Humdrum document encoded without expanion lists

thru command to create a through-composed document from an
abbrevatiated format

thru -v command to create a particular version of a through-composed
document

yank -s command to extract sections

yvank -t -s command to extract sections limited to sections of a particular type

strophe 1. alternative spine path, 2. command for extracting a particular
strophe

strophic passage initiator tandem interpretation indicating the beginning of a strophe (*strophe)

strophic passage terminator tandem interpretation indicating the end of a strophe (*S-)

strophe label tandem interpretation labelling one of several alternative spine-
paths, begins *S/

strophe end indicator tandem interpretation indicating the end of some spine path,
e.g. *S/fin

Summary of terms related to sections and strophes

In Chapter 37 we will see further examples of how sections and strophes are especially useful
when producing electronic editions.

