Chapter 19

Musical Contexts

Much of what makes an event of interest is the context of the event. We may be interested in what
precedes or follows a note or chord. We have already seen how the -A and -B options for grep can
be used to output ‘before’ and ‘after’ contexts. In Chapter 21 we will see how the patt and pat-
tern commands can provide further fiexibility for searching.

However, in this chapter we introduce the deceptively simple context command.

The context Command

The effect of the context command is easier to illustrate than describe. Consider a file (named
input) that contains the numbers 1 through 6 on successive lines. A null token is interposed be-
tween the numbers 2 and 3:

**numbers
1
2

* OV U W

The command
context -n 3 input

will produce the following output:

Musical Contexts Page 177

**numbers
123
2 3 4
345
4 56

*

In effect, context amalgamates data tokens from successive records and assembles them as multi-
ple-stops on a single record. Notice that the number of data records in the output is the same as in
the input: context has simply padded the trailing data records with null tokens. Also notice that
individual data tokens can appear more than once. For example, the number 3 appears at the end
of the second line, in the middle of the third line, and at the beginning of the fourth line. In the
above example only the numbers 1 and 6 appear once. Finally, notice that null tokens are simply
ignored: the null token in the fourth line of our input also appears in the fourth line of the output.

The -n 3 option tells context how many data tokens to amalgamate on each output line. With the
specification -n 2, just two data tokens would be amalgamated on each output line.

How might context be useful? Suppose we wanted to determine how harmonic octave intervals
are approached in Bach’s two-part keyboard Inventions. What harmonic interval tends to precede
an octave? We can use the hint command to generate the harmonic intervals for each successive
sonority. To calculate all passing intervals, we will preprocess using ditto:

ditto inventions* | hint
Typical outputs might look like this:

M3
M6
A4
=12
M6
m7
M3
A4
M6
Ad
M6
P4
M6
M7
m9
ml0
dlz

Page 178 Musical Contexts

ml0
P11
M9
=13
ml0
P4
M9
M10

Using context with the -n 2 option will cause pairs of successive intervals to appear in the data
records. Each data record will consist of a double-stop containing two harmonic intervals. We
simply need to identify those data records that have P8 as the second token of the double-stop. In
short, we are interested in data records that end with P8. The dollars-sign can be used in a regular
expression to anchor the pattern to the end of the line. Hence:

ditto inventions* | hint | context -n 2 -o = | grep ’ P8$’

The -0 = option tells context to omit any data tokens matching the equals-sign — that is, to omit
barlines from the amalgamated multiple stops. (The -0 option accepts any regular expression as a
parameter, so omitted data can be defined in a much more refined manner than simply specifying
an equals-sign.) The grep command grabs all of the lines ending with P8. We can now create an
inventory of harmonic interval pairs and order them from least common to most common:

ditto inventions* | hint | context -n 2 -o = \
| grep ' P8%’ | sort | unig -c | sort -rn

In the case of Bach’s fifteen two-part Inventions the results look as follows:

24 ml0 P8
24 M10 P8
23 m7 P8
21 M6 P8
19 MS p8
12 PpP5 P8
11 m6 P8
9 P12 P8
8 ml3 P8
8 - P8

In other words, the octave is most commonly approached by contracting from minor and major
tenths rather than expanding from a major sixth interval.

This same basic process can be used to address a variety of similar problems. For example, sup-
pose we wanted to determine the most common word following “gloria” in Gregorian chant texts.
We first extract the * *text spine, use context to create pairs of words, and search in the normal

way:

extract -i ‘**text’ chants* | context -n 2 \
| grep -i ‘ gloria$’ | sort | unig -c¢ | sort -nr

Musical Contexts Page 179

A slight change to the regular expression for grep will allow us to determine what word typically
Sollows after the word “gloria.” In this case, we need to anchor the word “gloria” to the beginning
of the line by using the caret (*).

extract -i ‘**text’ chants* | context -n 2 \
| grep -i '“gloria ’ | sort | uniqg -c | sort -nr

Suppose we wanted to determine what scale degree most commonly precedes the dominant pitch
in a sample of Czech folksongs. First we translate the folksongs to the * *deg representation us-
ing the deg command, and then process as above:

deg Czech* | context -n 2 -o = | grep ‘5 ' | sort \
| uniq -c | sort -nr

Harmonic Progressions

The V-1 progression is the most common chord progression in Western tonal music. After the V-1
progression, what is the most common chord progression in Bach’s chorale harmonizations? We
will assume that a Roman numeral * *harm spine already exists. First we extract the appropriate
spine. Then we create context records holding pairs of harmony data (omitting barlines). Then we
eliminate global and local comments, interpretations, and null data. We then sort the data records,
eliminate duplicates while counting, and then sort by numerical count in reverse order.

extract -i ‘**harm’ chorales* | context -n 2 -o = \
| rid -GLId | sort | unig -c¢ | sort -nr

Of course, there is no need to restrict ourselves to pairs of successive data tokens (i.e. -n 2) as we
have done in the above example. Given a database of melodies, we can determine the most com-
mon sequence of five melodic intervals as follows:

mint melodies* | context -n 5 -o = | rid -GLId | sort \
| uniqg -c | sort -nr

Using context with the -b and -e Options

Example 19.1 shows an excerpt from a flute study by Anderson. Although the work is monophon-
ic, the work’s structure is based on an underlying chord progression that is realized as a series of
arpeggiation figures.

Example 19.1 Joachim Anderson, Opus 30, No. 24.

U e TN~

s ot o oo ;
=

Page 180 Musical Contexts

The harmonic structure can be made more explicit by amalgamating all of the notes in each arpeg-

. gio. There are several possible ways of doing this, but the slurs are particularly useful delineators.
The -b option for context allows the user to specify a regular expression that marks the beginning
of each collection of data tokens. Consider the following command:

context -b ‘(' Anderson

Whenever a data record contains an open parenthesis a new amalgamation begins. The appropri-
ate output for measure 1 of Example 19.1 would be:

**kern

*clefG2

*k[b-]

*d:

*M4/4

=1-

(16dd 16ff 16dd 16a)

(16dd légg le6dd 16b-)

(16dd 16ff 1é6dd 1éa)

(16f l6a 16f 1l6e) =2

etc.

Notice how the barline for measure 2 has been included in the fourth group. (Groups continue un-
til the next open parenthesis is encountered.) Once again we might eliminate barlines by using the
-0 option. However, sometimes the barlines prove useful in further processing.

In the above passage by Anderson, the close of each slur provides a convenient marker for ending
each chord. We can be more explicit in defining the grouping boundaries by also including the -e
option for context. This option allows the user to specify a regular expression that marks the end
of each collection of data tokens. A suitably revised command would be:

context -b ‘(’ -e ')’ Anderson

The resulting output would begin as follows:

Musical Contexts Page 181

**kern

*clefG2

*k[b-1]

*d:

*M4/4

=1-

(ledd 16ff 16dd 1lé6a)

(16dd 16gg 16dd 16b-)
(l6dd 16ff 16dd léa)
(16f l6a 16f 16e)

=2
(164 16ff 16dd 16a)

etc.

We could pipe this output to the ms command in order to display the re-arranged passage. We
place the output in a postscript file and use a display tool such as ghostview to display the output:

context -b ’(’ -e ‘)’ Anderson | ms > output.ps

Example 19.2 Arpeggio Amalgamation.

et P

Notice that the resulting notation is “ungrammatical” because the meter signature disagrees with
the total duration for each measure.

Having reformatted our input data using context, we can continue by translating the data to anoth-
er representation. For example, we might use the deg command to reformulate each pitch group
as scale degrees. This might allow us to search for particular harmonic patterns such as (say) an

augmented sixth chord:

Page 182 Musical Contexts

context -b ‘(’ -e ‘')’ Anderson | deg | grep '6-' | grep ‘4+’ \
| grep 1’

Any regular expression can be used to identify the beginning and/or ending of an amalgamated
group. For example, tokens might be grouped by barlines. Suppose the census command tells us
that a monophonic work contains sixty-fourth notes. We might want to know whether the sixty-
fourth notes all tend to happen in one or two measures, or whether they occur throughout the work.
Just how many measures contain sixty-fourth notes?

context -b = inputfile | rid -GLId | grep -c ‘64’

Similarly, for * *kern inputs, the following command counts the number of measures that contain
at least one trill:

~

context -b = inputfile | grep -c¢ ‘“=.*[Tt]’

In **kern representations, the beginnings and endings of beams are indicated by the letters ‘L’
and ‘J’ respectively. We might group notes according to the beaming:

context -b L -e J inputfile

For example, the following command determines the location of any beams that cross over phrase
boundaries:

context -b L -e J inputfile | grep -n ‘}.*{’

As in the case of the -b option, the -e option can be used by itself. This option might prove useful,
for example, when collecting all chord functions preceding a cadence. In Bach’s chorale harmo-
nizations, for example, cadences are conveniently marked by a pause. In the **harm representa-
tion, pauses are indicated by the semicolon (;). We can create phrase related harmonic sequences
as follows:

context -o = -e ‘;’ input

For example, we might count the number of harmonic functions in each phrase as follows:
context -o = -e ’;’ input | rid -GLId | awk ’{print $NF}’

In Chapter 22 we will learn how to classify data into discrete categories. Using the recode com-

mand described in that chapter, we might group notes together according to changes of melodic di-
rection. That is, each group of would consist of notes that are all ascending or all descending in

pitch.
Using context with sed and humsed
The stream-editors (sed and humsed) are especially handy companions for context. Suppose we

wanted to identify by measure number those measures that contain a iii-V progression. Given a
**harm input, we would first amalgamate all harmony tokens for each measure.

Musical Contexts Page 183

context ~b "= inputfile | grep ‘iii V' | sed 's/ .*//; s/=//"

Here we have used grep to isolate all those records that contain the character sequence iii V.
We have then used sed to eliminate all data following the first occurrence of a space. This will
leave only the barline token — including the measure number.

When using grep it is common for the output to no longer conform to the Humdrum syntax. (This
is the reason why we used sed rather than humsed in the above example.) Remember that we can
always use the yank -m command to create “grep-like” output that still conforms to the Humdrum
syntax. If we wanted to maintain the Humdrum syntax, an equivalent to the above command
would be:

context -b "= inputfile | yank -m ‘iii Vv’ -r 0 \
| humsed ’s/ .*//; s/=//'

The range option (-r) specifies that we grab the current record (0) that matches the marker (iii
V). However, we are free to specify any other range. Consider the following command variation:

context -b "= inputfile | rid -d | yank -m ‘iii V'’ -r 1 \
| grep ’ii IV’ | humsed ‘s/ .*//; s/=//'

This command identifies all those measures containing a ii IV progression that have been preceded
by a iii V progression in the previous measure.

Consider another example. Suppose we wanted to determine whether the first pitch in a phrase
tends to be lower than the last pitch in a phrase. As before, we might first amalgamate all notes in
each phrase onto individual data records. We can use humsed to eliminate all notes other than the
first and last. The regular expression / .* / specifies any sequence of characters preceded by a
space and followed by a space. Replacing matching strings with a single space will leave output
data records consisting of double-stops. The first note of the double-stop will be the first note of
the phrase, and the second note of the double-stop will be the last note of the same phrase:

context -b { -e } file | humsed ‘s/ .* / /'

We can continue processing by piping the output to the semits command. This will leave pairs of
numbers representing the semitone distances from middle C. We might then isolate the data

records by using rid.
| semits | rid -GLId | awk ’{print $2-S1}’

Finally, we have used the UNIX awk utility to carry out some simple numerical processing: in this
case, substracting the first semitone value from the second one. Phrases that end on a pitch higher
than the beginning pitch will have positive semitone outputs. Phrases that end on a pitch lower
than the beginning pitch will have negative semitone outputs.

If we wanted to determine the semitone pitch distance between phrases, we need only to reverse
the begin (-b) and end (-e) criteria. That is, we will amalgamate the last note of one phrase with
the first note in the subsequent phrase. The full pipeline would be as follows:

Page 184 Musical Contexts

context -b { -e } file | humsed 's/ .* / /' | semits \
| rid -GLId | awk ‘{print $2-$%1}’

Linking context Outputs with Inputs

Frequently, we would like to answer context-related questions that mix different types of data to-
gether. For example, how many ascending major sixth intervals occur in phrases that end on the
dominant? For this question, we need concurrent access to both melodic interval data as well as
scale degree information. The solution to such questions typically involves linking different types
of data together using the assemble command. Suppose the first phrase in our input begins as fol-
lows:

**kern
*F:
*M3/4
{8Bn
8c

=1
4.a
8g

4f

=2

49

44

de

=3
2¢}

*

We need to pursue two independent lines of processing. First we creat a temporary file of scale
degree information:

mint inputfile > temp.mnt

Then we amalgamate the pitch data according the phrasing information, and translate the resulting
data to the * *deg representation:

context -b { -e } -o "= inputfile | deg > temp.deg
Next we assemble the two temporary files together to form a single document.
assemble temp.mnt temp.deg

The first phrase output will appear as follows:

Musical Contexts Page 185

**mint **deg

*F: *F:

*M3/4 *M3/4

[B] 4+ °5 "3 v2 vl "2 v6 "7 vb

etc.

We need to search for the interval of an ascending major sixth (+M6) associated with a phrase end-
ing on the dominant (5$). Before using the approprate grep command, we need to use ditto to
propagate the scale degree data over the null data tokens in the **deg spine; ditto will generate
the following output:

**mint **deg

*F *F

*M3/4 *M3/4

[B] 4+ °5 "3 v2 vl "2 v6 "7 v5
+m2 4+ °5 "3 v2 vl "2 v6 "7 vb
=1 4+ "5 "3 v2 vl "2 v6 "7 vb
+M6 4+ °5 "3 v2 vl "2 v6 "7 v5
-M2 4+ °5 "3 v2 vl "2 v6 "7 vh
-M2 4+ °5 "3 v2 vl "2 v6 "7 v5
=2 4+ °5 "3 v2 vl "2 v6 "7 v5
+M2 4+ °5 "3 v2 vl "2 v6 "7 v5
-P4 4+ "5 "3 v2 vl "2 v6 "7 v5
+M2 4+ "5 "3 v2 vl "2 v6 "7 V5
= 4+ °5 "3 v2 vl "2 v6 "7 v5
-M3 4+ °5 "3 v2 vl "2 v6 "7 v5
etc.

Finally, we use grep to search for the composite data:
assemble temp.mnt temp.deg] ditto] grep ‘"+M6.*55%"

In addition to linking together different types of data, sometimes we may also need to use a stream
editor to modify the data in some way. Suppose we wanted to test a theory that the tonic pitch
tends to be followed by a greater variety of melodic intervals than precedes it. That is, we might
suspect that the tonic tends to be approached in stereotypic ways — such as from the leading-tone
(+m2), from the supertonic (-M2) or from the dominant (+P4); but what follows the tonic may be

Page 186 Musical Contexts

less restricted.

In effect, we need to generate two inventories: one for intervals that approach the tonic, and one
for intervals that follow the tonic. We already know how to create an inventory of intervals ap-
proaching a particular scale-degree:

deg -a inputfile > templ

mint inputfile > temp2

assemble templ temp2 | grep '“[v*]*1 ‘ | sort | unig -c \
| sort -rn > inventory.pre

For the intervals following the tonic, we need to use context -n 2. This will create pairs of inter-
vals: the first interval will indicate the approach, and the second interval in each pair will indicate
the continuation.

deg -a inputfile > templ

mint inputfile | context -n 2 -o "= | temp2

humsed ’'s/ .*//' temp2 > intervals.pre

humsed ’‘s/.* //' temp2 > intervals.post

assemble templ intervals.pre | grep "1 * | sort | unig -c \
| sort -rn > inventory.pre

assemble templ intervals.post | grep ‘"1 ' | sort | unig -c \
| sort -rn > inventory.post

In some tasks, it may be necessary to generate more than one context output. For example, sup-
pose we wanted to identify possible “cross relations” between two voices. A cross relation occurs
when an accidental occurs in one voice but not in another voice within a brief period of time. One
approach is to extract each voice, translate to scale-degree and create brief contexts of (say) 2 or 3
notes. E.g.

extract -f 1 inputfile | deg | context -n 3 -o "= > lower.tmp
extract -f 2 inputfile l deg] context -n 3 -o "= > upper.tmp

We can then assemble the two contexts together:
assemble lower.tmp upper.tmp

Suppose our inputs consisted of an ascending C major scale played in the lower voice concurrent
with an E major scale in the upper voice. Our output would look as follows:

Musical Contexts Page 187

**deg **deg

*C: *C:

172 73 3 "4+ "5+

"2 "3 "4 “4+ "5+ "6
"3 "4 °5 ~“5+ "6 77

4 "5 "6 "6 "7 T1l+

“5 "6 "7 ~7 T1+ T2+
"6 "7 "1 ~“1+ "2+ 73
*_ .

In effect, each data record contains an agglomeration of three successive notes from both voices.
Seaching for cross-relations would entail looking for scale degrees that are both modified and un-
modified concurrently. For example, in the case of the subdominant pitch, we could search for
such instances as follows:

assemble lower.tmp upper.tmp | rid -GLId \
| egrep ‘4[+-]1.% .*4(["+-1)|$"’

The regular expression given to egrep searches for a subdominant pitch in the lower voice that is
either raised or lowered — concurrent with a subdominant pitch in the upper voice that has not
been modified. Notice the use of the tab character in the regular expressions to specify the precise
voice being searched. We would also need to test for the reverse situation, where the modified
pitch is in the upper voice:

assemble lower.tmp upper.tmp | rid -GLId \
| egrep "4["+-1.* LFA[+-1"

In a similar fashion, the user can mix together spines representing highly diverse types of contex-
tual information to carry out searches for complex patterns or conditions. For example, a user
might search for a specific piano fingering that coincides with particular interval-transitions and
harmonic contexts.

Using context with the -p Option

The -p option for context allows the output data records to be “pushed” forward by a specified
number of lines. Consider the normal operation of context as illustrated below. The left-hand
spine represents the input and the right-hand spine represents the output where the option -n 2 has
been specified.

Page 188 Musical Contexts

*C: *C

c cd
d d e
e e £
f fg
g g a
a ab
b b cc
cc

* *

Now consider the effect of adding the -p option. In this case, the complete command is:
context -n 2 -p 1

The corresponding result is:

**kern **kern

*C *C

c .

d c d
e d e
f e £
g fg
a g a
b ab
cc b cc
* o *

The data records have been pushed forward by one line: a null token now appears at the beginning
of the output spine rather than at the end. Similarly, consider the effect of the following command:

context -n 4 -p 2

The corresponding result is:

**kern **kern

*C: *C:

c

d .

e cdef
f de fg
g e f ga
a fgab
b g a b cc
cc

* *

The output is now padded with two preceding null tokens with a trailing null token at the end of
the spine. In summary, the -p option pushes the context records by a specified number of lines.

Musical Contexts Page 189

This allows us to move the contextual information around, and so provides more possibilities for
searching. In the above case, the pitch ‘e’ is aligned with contextual information that indicates the
two pitches that precede ‘e’ and the one pitch that follows it.

By way of example, suppose we are looking for a submediant pitch that is approached by two
melodic intervals of an ascending major third followed by a descending major second. First, we
generate independent **mint and * *deg outputs. Next we process the **mint data using con-
text to create pairs of successive intervals. Without the -p option, the assembled output might
look as follows:

**deg **mint

*C: *C:

3 [e] +m2
~4 +m2 +M2
"5 +M2 +M3
~7 +M3 -M2
v6 -M2 +m3
~1 +m3 -P4
v5

*

With -p 1 the output becomes:

**deg **mint

*C: *C:

3 .

~4 [e] +m2
"5 +m2 +M2
~7 +M2 +M3
v6 +M3 -M2
~1 ~-M2 +m3
v5 +m3 -P4
*x *

Now we can search directly for the situation of interest:

grep '6 +M3 -M2$’

Reprise

The context command essentially transforms sequences of events into collections of pseudo-con-
current events. This pseudo-concurrent arrangement enables processing using line-oriented or
record-oriented tools — most notably grep, sed, humsed and awk. For example, it facilitates pat-
tern searching using grep and also allows useful manipulations via tools such as humsed. The
manner by which data tokens are collected together can be defined by a starting marker or an end-
ing marker or both. Particular types of data can be excluded or omitted from the collections using
the -0 option, and the collections can be transported or pushed forward through the spine using the
-p option.

We’ve seen a number of ways by which context can be used to establish a particular context for

Page 190 Musical Contexts

data. In Chapter 21 we will see how the patt command can be used to establish other kinds of
contexts and how both of these commands can be used together.

