Chapter 14

Stream Editing

Most computer users are familiar with editing an electronic document using an interactive word-
processor or text editor. Stream editors are non-interactive editors that automatically process a
given input according to a user-specified set of editing instructions. A stream editor can be used,
for example, to automatically transform a document from British spelling to American spelling.
Stream editors are especially useful when processing large numbers of documents — such as a se-
ries of files encoding some musical repertory. In this chapter we will introduce two stream editors:
sed and humsed.

The sed and humsed Commands

The humsed command is simply a Humdrum version of the common sed stream editor. The syn-
tax and operation of sed and humsed are virtually identical. However, humsed will modify only
Humdrum data records, whereas sed will modify any type of record, including Humdrum com-
ments and interpretations. Both stream editors provide operations for substitution, insertion, dele-
tion, transliteration, file-read and file-write. When used in combination, these operations can
completely transform an input stream or document.

Simple Substitutions
The most frequently used stream-editing operation is substitution. Both humsed and sed desig-

nate substitutions by the lower-case letter s. Substitutions require two strings: the target string to
be replaced, and the replacement string to be introduced. The syntax for substitutions is as fol-

lows:
s<delimiter><target string><delimiter><replacement string><delimiter><options>
No spaces are permitted between these elements. The delimiter can be any character; however, the

same delimiter character must be used throughout the operation. The following substitution com-
mand causes occurrences of the letter ‘A’ to be replaced by the letter ‘B’:

s/A/B/

Since the slash character (/) appears immediately following the s, it becomes the delimiter for the



Stream Editing Page 131

rest of the operation. In this case no option has been given at the end of the substitution. Since the
delimiter can be any character, the above command is functionally identical to the following:

SXAXBx

If it is necessary to use the delimiter character (as a literal) within either the target string or the re-
placement string it can be escaped using the backslash character.

There are two ways to execute a substition operation such as given above. One way is to give the
substitution as a command-line argument to sed or humsed: :

humsed s%A%B% filename
Alternatively, the operation can be placed in a file (for example, named revise):
S%A%B%

Then the stream editor can be invoked to execute the operations contained in this file using the -f
option:

humsed -f revise inputfile

By default the output will be displayed on the screen. Using file-redirection (>) the output can be
placed in some other file. Note that you should never redirect the output to the same file as the in-
put — this will destroy the original input file. If necessary, send the output to a temporary file, and
then use the UNIX mv command to rename the output.

Suppose that you had encoded a musical work in the * *kern representation. Having finished the
encoding, you realize that what you thought were pizzicato marks are really spiccato marks. In
the **kern representation, pizzicatos are indicated by the double quote (") whereas spiccatos are
represented by the lower-case letter s. We can change all pizzicato marks to spiccato marks using
the following command:

humsed ’'s/"/s/g’ inputfile

Since the double quote is interpreted as a special character by the UNIX shell, we have escaped the
entire substitution operation by placing it in single quotes. (Alternatively, we could place a back-
slash immediately before the double-quote character.) Note also the presence of the g option at
the end of the string. Permissible options include any positive integer or the letter g. Without any
option, the sed and humsed substitute (s) operation will replace only the first occurrence of the
string in each data record. The g option specifies a “global” substitution, in that all occurrences on
a given data record are replaced. If the option consisted of the number ‘3’, then only the third in-
stance of the target string would be replaced on each line.

Selective Elimination of Data

The target string in substitution operations is actually a regular expression. This means that we
can specify patterns using the full power of regular expression syntax. Frequently, it is useful to



Page 132 Stream Editing

eliminate certain kinds of information from a file. For example, we can eliminate all sharps and
flats from a * *kern-format file as follows:

humsed s/ [#-]//g inputfile

Suppose we wanted to eliminate all beaming information in a score. In the * *kern representa-
tion, open and closed beams are represented by L and J respectively; partial beams are represented
by K and k.

humsed s/[JLkK]//g inputfile

Alternatively, we might want to eliminate all data except for the beaming information:

humsed s/["JLkK]//g inputfile

Sometimes we need to restrict the circumstances where the data are eliminated. For example, we
might want to eliminate all measure numbers. Eliminating all numbers from a * *kern file will
have the undesirable consequence of eliminating all note durations as well. Most humsed opera-
tions can be preceded by a regular expression delineated by slashes. This tells humsed to execute
this substitution only if the data record matches the leading regular expression. For example, the
following command eliminates measure numbers but not note durations:

humsed /"=/sX[0-9]*XXg inputfile

The operation may be interpreted as follows: look for lines that match a pattern where the first
character in the line is an equals sign; if you find this pattern look for zero or more instances of
any number between zero and nine, and replace that by an empty string; do this substitution for all
numbers on the current data record.

Incidentally, Humdrum provides a num command that can be used to insert numbers in data
records. The num command supports an elaborate set of options, but is not used often, so we
won’t describe it here. The following command renumbers all of the barlines in an input so that
the first measure begins with the number 72. (Refer to the Humdrum Reference Manual for details
regarding num.)

~

humsed /"=/sX=[0-9]*X=Xg inputfile | num -n "= -x == -p = -0 72

Suppose we wanted to eliminate all octave numbers from a * *pitch representation. In this case
we want to delete all numbers except when they occur in conjunction with a barline. Our substitu-
tion should occur only when the current record does not match a leading equals sign:

humsed /" ["=]1/s%[0-9]1%%g inputfile

Suppose we wanted to determine which of two MIDI performances exhibits more dynamic range
— that is, which performance has a greater variability in key-down velocities. Recall from Chap-
ter 7 that MIDI data tokens consist of three elements separated by slashes (/). The third element is
the key velocity. First, we want to eliminate key-up data tokens. These tokens can be distin-
guished by the minus sign associated with the second data element. An appropriate substutition is:



Stream Editing ‘ Page 133

s%[0-9][0-9]1*/-[0-9]1[0-91*/[0-9]* *%%g

(That is, replace by nothing any data that matches the following: a numerical digit followed by ze-
ro or more digits, followed by a slash, followed by a minus sign, followed by a digit, followed by
zero or more digits, followed by a slash, followed by zero or more digits, followed by zero or more
spaces.)

Having isolated only the key-down data tokens, we now need to eliminate everything but the third
data element, the MIDI key-down velocities:

S%[0-9][0-9]1%/[0-9][0-9]*/%%g

The stats Command

We can determine the range or variance of these velocity values by piping the output to the stats
command. The stats command calculates basic statistical information for any input consisting of
a column of numbers. A sample output from stats might appear as follows:

n: 124
total: 5700
mean: 45.9677
min: 9

max: 102

S.D.: 232.37

The value n indicates the total number of numerical values found in the input; the total speci-
fies the sum of these numbers; the mean identifies the average; the min and max report the mini-
mum and maximum values encountered, and the S.D. represents the standard deviation. The
standard deviation provides a useful way of characterizing which performance has greater variabil-
ity in key-down velocities.

Assuming that the above two stream-editing substitutions are kept in a file called revise we can
compare the dynamic range for the two performances as follows:

extract -i ‘**MIDI’ performl | grep -v "= | humsed -r revise \
| rid -GLId | stats
extract -i ‘**MIDI’ perform2 | grep -v "= | humsed -r revise \

| rid -GLIA | stats
The extract command has been added to ensure that we only process * *MIDI data; the grep

command ensures that possible barlines are eliminated, and the rid command eliminates com-
ments and interpretations prior to passing the data to the stats command.

Eliminate Everything But ...

A common use for humsed is to eliminate signifiers that are not of interest. Stream editors like
sed and humsed can be used to dramatically simplify some representation.



Page 134 Stream Editing

Did Monteverdi use equivalent numbers of sharps and flats? Or did he favor one accidental over
the other? A simple way to determine this is to throw away everything but the sharps and flats.
We can generate an inventory of just sharps and flats:

humsed ‘s/["#-]1//g’ montev* | rid -GLId | sort | unig -c

In some tasks, we might wish to transform a * *kern-format file so that only pitch-related infor-
mation is preserved:

humsed ‘s/["a-gA-G#-1//g’ inputfile

In extreme cases, we may wish to eliminate all Humdrum data from an input. The following com-
mand replaces all data tokens by null tokens:

humsed ’'s/[" 1 1*/./g"' inputfile

(That is, globally substitute all instances of the string not-a-tab followed by zero or more instances
of not-a-tab characters, by a single period character.) This sort of command can be useful in gen-
erating a file that maintains the structure but not the content of some document. Incidentally, nei-
ther the sed nor the humsed commands support extended regular expressions, so we are not able
to use the + metacharacter in the above substitution.

Deleting Data Records
Sometimes it is useful to delete entire data records rather than simply eliminating certain kinds of
information. The d operation causes lines to be deleted. Normally, it is preceded by a regular ex-

pression that identifies which records should be eliminated. Deleting barlines can be done using
the following command:

humsed /"=/d inputfile
Note that this is functionally equivalent to:

grep -v "= inputfile
In the general case, humsed /.../d is preferable to grep -v. Remember that humsed only manipu-
lates Humdrum data records; it never touches comments or interpretations. The grep command

has no such restriction. Consider, for example, the following command to eliminate grace notes
(acciaccaturas) from a * *kern-format file.

humsed ‘' /q/d’ inputfile
By contrast, the command:
grep -v q inputfile

would also eliminate any comments or interpretation records containing the letter ‘q’.



Stream Editing Page 135

Suppose that we wanted to know whether a melody still evokes a certain key perception even if we
eliminate all the tonic pitches. First we translate the representation to scale degree and assemble
this file with the original * *kern representation for the melody.

deg input > temp
assemble input temp | humsed ’/1$/d’ | midi | perform

Of course deleting all of the tonic notes will disrupt the original rhythm. An alternative is to re-
place all tonic pitches by rests:

deg input > temp
assemble input temp | humsed '/1$/s%[A-Ga-g#-]1*%r%’ | midi \
| perform

Perhaps we might want to eliminate all the pitch information, and simply listen to the rhythmic
structure of a work. That is, we might change all of the pitches in a work to a single pitch — in
the following case, middle C:

humsed ‘s/[A-Ga-g#-]1*/c/’ | midi | perform

Adding Information

The substitute command can also be used to add information to points in a Humdrum input. For
example, we might wish to add an explicit breath-mark (,) to the end of each phrase in a
**kern-format input:

humsed s/}/}, /g inputfile

Any occurrence of the ampersand (&) in the replacement string of a substitution is a standard
stream-editing convention which means “the matched string.” Suppose we want to add a tenuto
mark to every quarter-note in a work. The following substitution seeks the number ‘4’ followed
by any character that is not a digit or period. This pattern is replaced by itself (&) followed by a
tilde (7), the * *kern signifier for a tenuto mark:

humsed s/4["0-9.1/&7/g inputfile

Multiple Substitutions

Some tasks may require more than one substitution command. Multiple operations can be invoked
by separating each operation by a semicolon. In the following example, we change all **kern
quarter-notes to eighth-note durations:

humsed ‘s/4[A-Ga-g]/8&/g; s/84/8/g’ inputfile
The first substitution finds strings that match the number ‘4’ followed by an upper- or lower-case

letter from A to G. The matched string is then output preceded by the number ‘8°. This operation
will change all quarter notes and rests to eighty-fourth durations. The ensuing substitution opera-



Page 136 Stream Editing
tion changes ‘84’ to ‘8’ and so completes the transformation.

Switching Signifiers

In some situations, we will want to switch two or more signifiers — make all A’s B’s and all B’s
A’s. These sorts of tasks require three substitutions and involve creating a unique temporary
string. For example, the following command changes all **kern up-bows to down-bows and
vice versa.

humsed ’'s/u/ABC/g; s/v/u/g; s/ABC/v/g’ inputfile

The first substitution changes down-bows (‘u’) to the unique temporary string ABC. (In the
* *kern representation ABC is an illegal pitch representation, so it is bound to be a unique charac-
ter string.) The second substitution changes up-bows (v) to down-bows. The third substitution
changes occurrences of the temporary string ABC to up-bows.

Executing from a File

When several instructions are involved in stream editing, it can be inconvenient to type multiple
operations on the command line. It is easier to place the editing instructions in a file, and use the
-f option (with either sed or humsed) to execute from the file. Consider, for example, the task of
rhythmic diminution, where the durations of notes are halved. We might create a file called
diminute containing the following operations:

s/[0-9][0-9]\*/&XXX/g
s/64XXX/128/g
s/32XXX/64/g
s/16XXX/32/g
s/8XXX/16/g
s/4XXX/8/g

s/2XXX/4/g

s/1XXX/2/g

s/0XXX/1/g

Each substitution command is applied (in order) to every line or data record in the file. The first
substitution adds the unique string XXX to every number. The ensuing substitutions transform
these numbers to appropriate diminution values. We can execute these commands as follows:

humsed -f diminute inputfile

Writing to a File

A useful feature of humsed is the “write” or w operation. This operation causes a line to be writ-
ten to the end of a specified file. Suppose, for example, we wanted to collect all seventh chords in-
to a separate file called sevenths. With a **harm-format input, the appropriate command

would be:



Stream Editing Page 137

humsed ‘/7/w sevenths’ inputfile.hrm
Each line containing the number 7 wll be written to a file named sevenths.
Similarly, we could copy all sonorities containing pauses to the file pauses.
humsed ‘/;/w pauses’ inputfile

Of course there are other ways of achieving the same goal:

vank -m ‘;’ O inputfile > pauses
Or even:
grep ';' inputfile | grep -v ‘" [!*]’ > pauses

In some cases, a stream editor can be used to eliminate or modify data that will confound subse-
quent processing. For example, suppose we wanted to count the number of phrases that begin on
the subdominant and the number of phrases that end on the subdominant. The deg command will
allow us to identify subdominant pitches (via the number ‘4’). Since we would like to maintain
the phrase indicators, we will avoid the -x option for deg. However, the -x option will pass all of
the non-pitch related signifiers, including the duration data which encodes numbers. Hence, we
will not be able to distinguish the subdominant (‘4’) pitch from a * *kern quarter-note (‘4’). The
problem is resolved by first eliminating all of the duration information (numbers) from the original
input:

humsed ’s/[0-9.]1//g’ input.krn | deg | egrep -c ' ({.*4)|4.*{)"’
humsed ’s/[0-9.1//g’ input.krn | deg | egrep -c ’(}.*4)|4.*})’

In texts for vocal works, identify the number of notes per syllable.

extract -i ‘**kern’ input | humsed ’‘s/X//g’ > tune
extract -i ‘**silbe’ input | humsed ‘s/[a-zA-Z]*/X/’ > lyrics
assemble tune lyrics | cleave -i ‘**kern,**silbe’ -o ‘**new’ \

> combined
context -b X -o ‘[r=]’ combined | rid -GLId | awk ’{print NF}’

- Identify the number of notes per word rather than per syllable.

extract -i ‘**kern’ input > tune
extract -i ‘**silbe’ input | humsed ‘s/"["-].%*["-]1$/BEGIN_END/;
s/-.*["-1$/END/; s/"["-]1.*-/BEGIN/' > lyrics
assemble tune lyrics | cleave -i ‘**kern,**silbe’ -o ‘**new’ \
> combined
context -b BEGIN -e END -o ’[r=]’ combined | rid -GLId \
| awk ‘{print NF}’



Page 138 Stream Editing

Reading a File as Input

Another useful feature is the humsed “read” or r operation. Whenever a leading regular expres-
sion is matched, a file is read in at that point. Suppose, for example, that we want to annotate a file
with Humdrum comments identifying the presence of cadential 6-4 chords. First, we might create
a file — comment . 6 -4 — containing the following Humdrum comment:

! A likely cadential 6-4 progression.
We can use the Humdrum pattern command (to be described in Chapter 21), as follows:

File template:

o x
Ic

“NLo*
= *

VI~I]
Command:

pattern -f template inputfile > output
humsed ‘cadential-64/r comment.6-4‘ output > commented.output

Reprise

The sed and humsed commands provide stream editors that can automatically edit a data stream.
We’ve seen that multiple operations can be carried out, either from the command line or from a file
containing editing instructions. It should be noted that the sed and humsed commands provide
many more editing facilities than those discussed in this chapter. Some 25 operations are provided
by sed and humsed. For example, segments of text can be stored in various buffers, the contents
of these buffers modified, and the results placed anywhere in the output text. Markers can be set at
particular points and conditional branch statements executed. Stream-editing scripts have been
written to execute programs of considerable complexity. However, for most tasks, the simple sub-
stitute (s) and delete (d) operations are the most useful. For further information about stream edit-
ing using sed, refer to the book on sed and awk written by Dale Dougherty (listed in the bibliogra-

phy).





