Chapter 13

Assembling Scores

In the previous chapter we learned how to extract parts and passages from Humdrum files. In this
chapter we discuss the reverse procedures: how to assemble and coordinate larger documents from
individual segments and parts. We will discuss four tools: the UNIX cat command, and the Hum-
drum assemble, timebase and rid commands.

The cat Command

The UNIX cat command allows two or more inputs to be concatenated together. If we concatenate
two files, the output will consist of the contents of the first file, followed immediately by the con-
tents of the second file. For example, the following command will concatenate together the files
mov.1, mov.2 and mov.3 and place the result in the file complete. The order of concatena-
tion is the same as the order of file names given on the command line:

cat mov.l mov.2 mov.3 > complete

If each of the concatenated files conforms to the Humdrum syntax, then the resulting combined
file is guaranteed to conform to the Humdrum syntax. However, in many cases, there may be re-
dundant information present in the concatenated output. Suppose we had three files, each of
which encoded a single measure of music. Concatenating them together might result in an output

such as the following:

1l File 1
**xkern **kern **kern **kern
*M4/4 *M4/4 *M4/4 *M4/4

*G: *G: *G: *G:

*k [£#] *k[£#] *k[f#] *k[f#]
4GG 4B 44 4g

=1 =1 =1 =1
4GG 44 4g 4b
AFF# 44 [4a 4dd
8GG 44 8a] 4b
8BB . [8g

4D 44 8g1] da

Page 118 Assembling Scores

8f#
* * * *
11 File 2
**kern **kern **kern **kern
*M4/4 *M4/4 *M4/4 *M4/4
*k(£#] *k[£#] *k[f#] *k[f#]

=2 =2 =2 =2
8G 44 4g 4b
8F# . .

4E de 4g dcc#
4D; 4n; 4f#; 44d;
8A 4cn 4da dee
8G

* o * o * *
't File 3

**kern **kern **kern **kern
*M4/4 *M4/4 *MA/4 *M4/4
*k[£#] *k[f#] *k[f#] *k[f#]
*k[£#] *k[f#] *k[f#] *k[f#]

=3 =3 =3 =3

4F# 44 [4a 8dd
. . . 8cc
4G 44 8al 4b

. . [8g

8C# 8e 8g1] 4a

8D# 4B 8f#

8E . 8e 8g

8F# 8A 8d 8a

* . * * *

Notice that each complete measure ends with spine-path terminators and that the **kern exclu-
sive interpretations are repeated. This organization has a number of repercussions for various
Humdrum tools. For example, the mint command calculates melodic intervals between successive
notes within a spine. However, mint will not calculate intervals between pitches that are separated
by a spine-path terminator. In other words, in the above output, mint will fail to calculate the
melodic intervals between notes in successive measures.

The rid Command

This problem can be resolved by using the Humdrum rid command. The rid command can be
used to eliminate various kinds of records. Each option for rid eliminates a different class of
records. Here are the record classes with their associated options:

-G eliminate all global comments

-g eliminate only global comments that are empty
- eliminate all local comments

-1 eliminate only local comments that are empty

Assembling Scores Page 119

-1 eliminate all interpretations

-i eliminate only null interpretations

-D eliminate all data records

-d eliminate only null data records

-T eliminate all tandem interpretations

-t eliminate duplicate (repeated) tandem interpretations

-U eliminate unnecessary exclusive interpretations (see below)
-u sameas-U

Null records are devoid of content. For example, null interpretations consist of a single asterisk in
each spine; null data record consists of just null data tokens (.) in each spine; null local comments
consist of a single exclamation mark in each spine. Null global comments contain just two excla-
mation marks at the beginning of a record.

Upper- and lower-case options are used to distinguish all records of a certain class (upper-case)
from empty, null or repeated records of a certain class (lower-case).

By way of example, the following command will eliminate all global comments (including refer-
ence records) from the input:

rid -G Saint-Saens
Similarly, the following command will eliminate all tandem interpretations from an input:
rid -T Vaughan-Williams

Options can be combined. The following command eliminates all global and local comments, in-
terpretations, and null data records:

rid -GLId

The option combination -GLId is very common with rid since only non-null data records are re-
tained in the output.

With the -u option, rid will remove “unnecessary” exclusive interpretations. Exclusive interpreta-
tions are deemed unnecessary if they don’t change the current status of the data. In the following
example, the second **psaltery interpretation is redundant. The rid -u command would re-
move the first spine-path terminator and the second exclusive interpretation — leaving a continu-

ous data spine. -

**psaltery

* o

**psaltery

Page 120 Assembling Scores

In addition, rid provides a -t option which removes “duplicate” or repeated tandem interpretations.
In the above example there is no need to repeat the meter signature and key signature in each mea-
sure. The following command will concatenate each of the three measures together, and then
eliminate the unwanted interpretations:

cat barl bar2 bar3 | rid -ut
The resulting output is given below:

11 File 1

**kern **kern **kern **kern

*M4/4 *M4/4 *M4/4 *M4/4
*k[£#] *k[£#] *k[f#] *k[f#]

4GG 4B 4d 4g
=1 =1 =1 =1
4GG 44 4g 4b
4FF# 44 [4a 4dd
8GG 44 8al 4b
8BB . [8g .
4D 44 8g] da
. . 8f#

11 File 2

= = =2 =2
8G 44 4g 4b
8F# . .
4E de 4g dec#
4D; 4A; 4f%#; 444;
8A 4dcn 4a dee
8G

1! File 3

=3 = = =
AF# 44 [4a 8dd
. . . 8cc
4G 44 8al 4b
. . [8g .
8C# 8e 8g] 4a
8D# 4B 8f# .
8E . 8e 8g
8F# 8A 8d 8a
* * _ * * _

Of course care should be exercised when concatenating inputs together. Although an output may
conform to the Humdrum syntax, the result can nevertheless violate conventions for a specific rep-
resentation such as * *kern. For example, if we were to concatenate measure 85 to measure 87,
it is possible that tied-notes won’t match up, or that phrases will begin without ending, etc. These
anomalies may cause problems with subsequent processing.

Assembling Scores Page 121

Assembling Parts Using the assemble Command

Assembling parts into a full score is slightly more challenging than concatenating together musical
segments. The principle tool for joining spines together is the assemble command. Consider the

following two files:

!l Assemble example
1t File 1
**Letters
I A to E

* M OQwp

1!l Assemble example
11 File 2

**Numbers

1 to 5

!
1
2
3
4
5
* ..
These two files can be aligned side by side using assemble:

assemble letters numbers
The resulting output is:

11 Assemble example

11 File 1

11 File 2

**Letters **Numbers
! A to E 1 to 5

!
1
2
3
4
5
*

* OO ww

Note the following: (1) The spines are joined side by side from left to right in the same order as
specified on the command line. (2) Local comments are preserved in their appropriate spines. (3)
When identical global comments occur at the same location in both files, only a single instance of

Page 122 Assembling Scores

the comment is output. (4) Dissimilar global comments are output successively.

The files joined by assemble are not confined to a single spine. For example, one input file may
contain 2 spines and a second file may contain 20 spines. The resulting output will contain 22
spines. There is no limit to the number of files that can be assembled at one time.

In many cases, the input files will have dissimilar lengths. The assemble command will correctly
terminate the appropriate spines. For example, in the above case, if the numbers file contained

only the numbers 1 to 3, the assembled output would appear as follows:

!l Assemble example

11 File 1

11 File 2

**Letters **Numbers
! A to E 1 to 3

!
1
2
3
*

* MO QWP

If the order of the input files was reversed, assemble would produce an output with the appropriate
spine-path changes:

'l Assemble example

'l File 2

11 File 1

**Numbers **Letters
1 to 3 ! A to E

*) WP

!
1
2
3
*
D
E
* -
Note that if all of the input files conform to the Humdrum syntax, then assemble guarantees that
the assembled output will also conform to the Humdrum syntax.

Aligning Durations Using the fimebase Command

Suppose now that we wanted to join two hypothetical files containing * *kern data. The first file
contains two quarter notes, whereas the second file contains four eighth notes:

Assembling Scores Page 123

't File 1
**kern

4c

4d

'l File 2
**kern
8e

8g

8f

8g

*

Using assemble to paste them together will clearly lead to an uncoordinated result. The two quar-
ter notes in file 1 will be incorrectly matched with the first two eighth notes in file 2.

The Humdrum timebase command can be used to reformat either * *kern or **recip inputs so
that each output data record represents an equivalent slice (elapsed duration) of time. (Barlines are

ignored by timebase.) The timebase command achieves this by padding an input with null data
records. In the above case, we would preprocess file 1 as follows:

timebase -t 8 filel > filel.tb
The new file would look like this:

11 File 1

**kern

4c

4d
The -t option is used to indicate the “time base” — in this case, an eighth duration. Since all non-
barline data records in both files represent elapsed durations of an eighth-note, we can continue by
using the assemble command as before. The command:

assemble filel.tb file2

will result in the following two-part score:

11 File 1

11 File 2

**kern **kern
4c 8e

. 8g
44 8f

Page 124 Assembling Scores

8g

* * _
Suppose that £ile2 also contained a quarter-note. For example, consider a revised file2:

1l File 2
**kern

8e

8g

4f

*

Before assembling the two parts, we would need to apply the timebase command to this file (us-
ing the same 8th-note time-base value). Assembling the two “time-based” files would produce the

following result:
1t File 1
1t File 2

**kern
4c

4d

*

**kern
8e

8g
4f

* e

Notice that we have a spurious null data record in the last line; both parts encode null tokens. For
most processing, the presence of null data records is inconsequential. However, if we wish, these
null data records can be eliminated using the rid command with the -d option. In fact it is com-
mon to follow an assemble command with rid -d to strip away unnecessary null data records. The

command:

assemble filel.tb file2.tb | rid -d

would result in the following output:

11 File 1
11 File 2
**kern
4c

44

*

**kern
8e
8g
4f

* _

The timebase command can be applied to multi-spine inputs as well as single-spine inputs. Con-
sider, the following input:

Assembling Scores Page 125

**kern **kern **kern **kern **commentary

4g 8.r 8.cc l6ee 2nd inversion
. . 8ff
32b lé6cc lé6gg clash

. 32a . . .

8f 8cc 8dd 8ff suspension

* * K o * * _

The following command will cause the addition of null data records so that each data record repre-
sents an elapsed time of a 32nd duration. Incidentally, notice that any spine contain non-rhythmic
data — such as the **commentary spine in the above example — is also transformed so that

synchronous data is maintained.
timebase -t 32 Corelli

The corresponding output is as follows.

**kern **kern **kern **kern **commentary
*tb32 *tb32 *tb32 *tb32 *tb32
4g 8.r 8.cc léee 2nd inversion

8ff

32b lé6cc 1l6gg clash

. 32a . . .
8f 8cc 8dd 8ff suspension
* o * _ K * .. K

Notice that timebase has added a tandem interpretation (*tb32). This indicates that the output
has been processed so that each non-barline data record represents an elapsed duration equivalent
to a thirty-second note.

Assembling N-tuplets

Typically, one can simply use the shortest duration present as a guide for a suitable time-base val-
ue. The shortest duration can be determined using the census -k command described in Chapter 4.
However, tuplets require a little more sophistication. Suppose we wanted to assemble two parts,
one containing just eighth-notes and the other containing just quarter-note triplets. (The quarter-
note triplets will be encoded as three notes in the time of a half-note, or “6th” notes.) We need to
create an output whose rhythmic structure will appear as follows:

Page 126 Assembling Scores

**kern **kern
*M2/4 *M2/4

=1 =
6 8
. 8
6 .

. 8
6 .

. 8
=2 =2
6 8
. 8
6 .

. 8
6

=3 =3

In this case, choosing a time-base according to the shortest duration (8th) will not work since a 6th
note is not an integral multiple of the eighth duration. We need to find a common duration factor
for both values. The shortest common duration is a 24th note (there are three 24th notes in an 8th
note, and four 24th notes in a 6th note). Applying the time-base value ‘24’ to both files will allow
us to coordinate them properly. Remember that rid -d can be used to eliminate unnecessary null
data records once we have finished assembling the spines. In the worst case, you can determine a
common duration factor by simply multiplying together the shortest notes in the files to be assem-
bled. For example, 6 X 8 = 48; so a time-base of 48 will be guaranteed to work for both files.

Checking an Assembled Score Using proof

In assembling any score from a set of parts, there is always the danger of using the wrong time-
base value. When parts are miscoordinated, it is typically the consequence of one or more notes
being discarded by timebase. Fortunately, such miscoordinations are easily detected by applying
the proof command to any assembled * *kern output. The proof utility checks **kern repre-
sentations for a wide variety of possible encoding errors or ambiguities:

proof fullscore

By way of summary, creating a full score from a set of **kern parts involves the following five
tasks: (1) Identify a common duration factor for all the parts. Use census to determine the shortest
duration; if any of the parts contains an N-tuplet, then the common duration factor may be smaller
than the shortest note. (2) Use the timebase command to expand each input file separately using
the common duration factor. (3) Assemble the parts using assemble. (4) If desired, eliminate un-
necessary null data records using rid -d. (5) Check the assembled score for rhythmic coherence

using the proof command.

Assembling Scores Page 127

Other Uses for the timebase Command

The most common use of timebase is as a way of expanding a file by padding it with null data
records. However, timebase can also be used to contract a file, giving us only those sonorities that
lie a fixed duration apart. For example, specifying a time-base of -t 2 will cause only those sonori-
ties that are separated by a half-note duration to be output. This sort of rhythmic reduction can be
useful in certain circumstances. For example, suppose you suspect there may be a hemiola ten-
dency in a given work by Brahms, where the duration separating hemiola notes is a dotted-quarter.
The command:

timebase -t 4. brahms
can be used to extract only those sonorities that are separated by a dotted-quarter duration.

Similarly, suppose we want to extract all sonorities falling on the third beat of a waltz written in
3/2 meter. First we would edit the input file so it begins on the third beat of some measure. Then
we could use the following command:

grep -v "= waltz | timebase -t 1. > 3rd_beat

Note that the use of grep here is essential in order to eliminate barlines. The timebase command
resets itself with each barline, so time-base durations are calculated from the beginning of the bar.
When barlines are eliminated, timebase cannot synchronize to the beginning of each bar and so
simply floats along at the fixed time-base.

Additional Uses of assemble and timebase

Although we normally assemble parts together, sometimes it is useful to assemble entire scores to-
gether. Suppose we wanted to listen to a theme at the same time as one of its variations. We
might first use yank to extract the appropriate sections. At the same time we might determine a
common duration factor and expand them using timebase.

yvank -s Theme -r 1 blacksmith | timebase -t 32 > templ
yvank -s ‘Variation 1’ -r 1 blacksmith | timebase -t 32 > temp2

Then we assemble the two sections together, translate to the * *MIDI representation and use per-
form to listen to both sections at the same time:

assemble templ temp2 | midi | perform

Similarly, suppose we would like to compare the bass lines for each variation in some set. We
might extract each of the bass lines, assemble them into a single score, and then use the ms and
ghostview commands to allow us to see all of the bass lines for all of the variations concurrently.

yank -s ‘Variation 1’ -r 1 goldberg | timebase -t 16 > templ
yank -s ‘Variation 2’ -r 1 goldberg | timebase -t 16 > temp2

etc. ...
assemble templ temp2 temp3 ... | rid -d | ms > basslines.ps

Page 128 Assembling Scores

ghostview basslines.ps

The most common use of assemble is not to assemble parts, but to assemble different types of
concurrent information. Suppose we would like to determine whether descending minor seconds
are more likely to be fah-mi rather than doh-ti. We can use the mint command to characterize
melodic intervals, and the solfa command to characterize scale degrees. Assume that our input is
monophonic:

mint melodies > templ
solfa melodies > temp2

The files templ and temp2 will have the same length, so we can assemble them together. This
will generate an output consisting of two spines, **mint and **solfa. In effect, the **mint
spine data will tell us the interval used to approach the scale degree encoded in the **solfa
spine. We can use grep to search for the appropriate combinations of interval and scale degree
and count the number of occurrences:

assemble templ temp2 | grep -c ‘-m2.*mi’
assemble templ temp2 | grep -c ‘-m2.*ti’

This same approach can be used to address (innumerable) questions pertaining to concurrent pat-
terns. For example, suppose we have a **harm spine that identifies the ‘Roman numeral’ func-
tional harmony for some choral work. We can identify complex situations such as the following:
for the soprano voice, count how many subdominant pitches are approached by an interval of a ris-
ing third or a rising sixth and coincide with a dominant seventh chord. First, let’s extract the so-
prano line and create a corresponding scale degree representation using deg. We can use the -a
option to avoid outputting the melodic direction signifiers (* and v):

extract -i ’'*Isopran’ howells | deg -a > templ

Next, let’s again extract the soprano voice and create a corresponding melodic interval representa-
tion using mint. Since we are not interested in interval qualities we can invoke the -d option to
output only diatonic interval sizes.

extract -i ’*Isopran’ howells | mint -d > temp2
extract -i ‘**harm’ howells > temp3

We have also extracted the * *harm spine and placed it in the file temp3. If we assemble togeth-
er our three temporary files, the result will have three spines: **deg, **mint and **harm. We
can now use grep to search and count all instances of subdominant pitches that are approached by
ascending thirds/sixths and that coincide with dominant seventh chords (in the **kern represen-

tation: ‘V7°):
assemble templ temp2 temp3 | grep -c '~ 4<tab>+[36]<tab>V7

The timebase command can also be used for tasks other than assembling parts together. Suppose
we would like to determine whether secondary dominant chords are more likely to appear on the
third beat than other beats in a triple meter work. The timebase command can be used to reformat
a score so that each measure occupies the same number of data records. For example, in a 3/4 me-

Assembling Scores Page 129

ter, an eighth-note time-base will mean that each measure will contain six data records, and the
fifth data record will correspond to the onset of the third beat. Recall from Chapter 12 that the
yank -m command allows us to extract particular data records following a specified marker. In the
following command, we have defined the marker as a barline (-m "=) and instructed yank to
fetch the fifth line following each occurrence of the marker (-r 5). In our example, the grep
command is being used to count V/V chords occurring on third beats:

timebase -t 8 strauss | solfa | yank -m = -r 5 | grep re \
| grep fe | grep -c la

We can repeat this command for beats one and two by changing the -r parameter to 1 and 3 re-
spectively.

Reprise

In this chapter we have learned how to concatenate musical passages together using the cat com-
mand. We also learned how to eliminate redundant exclusive and tandem interpretations from
concatenated outputs using the -u and -t options for rid. In addition, we learned how to assemble
two or more spines into a single output file using assemble. In the case of **kern and **re-
cip representations, we learned how to use the timebase command to preprocess each constituent
file so that all data records represent equivalent elapsed durations. Having assembled a full score
from parts, rid -d can be used to eliminate any residual or unnecessary null data records. The
proof command can be used to ensure that any assembled * *kern data is correctly aligned.

Finally, we learned that the timebase command can be used for other analytic purposes. Specifi-
cally, it can be used to reduce a score rhythmically so only particular onset points or beats are re-
tained. In Chapter 23 we will see additional uses of timebase for a variety of types of rhythmic

tasks.

