Chapter 12

Selecting Musical Parts and Passages

A Humdrum file may contain an encoding of a full score, or even of a large collection of scores.
Often, we would like to isolate or extract particular parts or segments from a file or input stream.
For example, we might want to extract a particular instrumental part, or select a group of related
instruments; we might want to isolate a particular passage, remove certain measures, or extract a
specific phrase; we might want to pull out a labelled section of a score (such as a Coda or Da
Capo), or we might want to select a particular verse in a strophic song. In addition, we might want
to isolate specific types of information, such as the figured bass, melodic interval information, or
vocal text.

In this chapter we will explore two Humdrum tools for extracting material: extract and yank.

We know that Humdrum representations are structured like a grid with horizontal data (“records”)
representing concurrent information, and vertical data (“spines”) representing sequentially occur-
ing information. The Humdrum extract command can be used to isolate columns or spines of in-
formation. The yank command can be used to isolate rows or records. The extract command can
be used to extract musical parts or other types of information that might be represented in individ-
ual spines. The yank command can be used to isolate passages or segments from an input, such as
specified measures, phrases, or sections.

Extracting Spines: The extract Command

The extract command allows the user to select one or more spines from a Humdrum input. The
command is typically used to extract parts (such as a tuba part) from some multi-part score. How-
ever, extract can also be used to isolate dynamic markings, musical lyrics, or any other stream of
information that has been encoded as a separate Humdrum spine.

The extract command has several modes of operation. With the -f option, the user may specify a
given data column (spine) or “field” to extract. Consider the opening of Bach’s second Branden-

burg Concerto shown in Example 12.1.

Page 104 Parts and Passages

Example 12.1. J.S. Bach Brandenburg Concerto No. 2, mov. 1.

!1'11COM: Bach, Johann Sebastian

I'110PR: Six Concerts Avec plusieurs ... le prince regnant d’Anhalt-Coethen
1110TL: Brandenburgische Konzerte F

! 1 I1XEN: Brandenburg Concerto No. 2 in F major.

1'110MV: Movement 1.

P1IISCT: BWV 1047

[

! [Allegro]
kern “kern **kern **kern **kern **kern **kern **kern “**kern **kern

*ICklav *ICstr *ICstr *ICstr *ICstr *ICstr *ICstr *ICww *ICww *ICbras
*Icemba *Icello *Icbass *Iviola *Ivioln *Ivioln *Ivioln *Ioboe *Ifltds *Itromp

*IGcont *IGcont * * * * * * * *
*IGripn *IGripn *IGripn *IGripn *IGripn *IGripn *IGconc *IGconc *IGconc *IGconc
lcembal !’cello !Bd'rip !Vd'rip !v’1lin2 !v‘’linl !v‘lino !oboe tflauto !tromba
*k([b-] *k[b-] *k[b-] *k[b-]1 *k[b-1 *k[b-1 *k[b-] *k[b-] *k[b-1 *kI[]
*F: *F: *F: *F: *F: *F: *F: *PF: *F: *F:
*M2/2 *M2/2 *M2/2 *M2/2 *M2/2 *M2/2 *M2/2 *M2/2 *M2/2 *M2/2
*MM54 *MM54 *MM54 *MM54 *MM54 *MMS4 *MM54 *MMS54 *MMS54 *MM5 4
*clefF4 *clefF4 *clefF4 *clefC3 *clefG2 *clefG2 *clefG2 *clefG2 *clefG2 *clefG2
8FF/ 8FF/ 8FFF/ 8a\ 8cc\ 8ff\ 8Ef\ 8Ef\ 8fE\ 8f/

=1 =1 =1 =1 =1 =1 =1 =1 =1 =1
16F\LL 16F\LL 16FF\LL B8f\L 8a/L 8cc\L 8cc\L 8cc\L 8ce\L 8a/L
16G\ 16G\ 16GG\

16A\ 16a\ 16AA\ 8c\ 16f/LL 1l6a\LL 16a\LL 1l1l6a\LL 16a\LL 8cc/
16G\JJ 16G\JJ 16GG\JJ . 16g/JJ 16b-\JJ 16b-\JJ 16b-\JJ 16b-\JJ .
16F\LL 16F\LL 16FF\LL 8f\ 8a/L 8cc\L 8cc\L 8cc\L 8cc\L 8a/
16G\ 16G\ 16GG\

16A\ 16A\ 16AA\ 8c\J 16£/LL 1l6a\LL 1l6a\LL 16a\LL 16a\LL B8f/J

16G\JJ 16G\JJ 16GG\JJ . 16g/JJ 16b-\JJ 16b~\JJ 16b-\JJ 16b-\JJ .
16F\LL 16F\LL 16FF\LL B8f\L 8a/L 8cc\L 8cc\L 8cc\L 8cc\L 8a/L

16E\ 16E\ 16EE\
16F\ 16F\ 16FF\ 8a\ 8cc/ 8ff\ 8E£f\ 8ff\ 8ff\ 8cc/
16G\JJ 16G\JJ 16GG\JJ
16A\LL 16A\LL 16AA\LL 8cc\ 8f/ 8cc\ 8cc\ 8cc\ 8cc\ 8ff/
16B-\ 16B-\ 16BB-\
16A\ 16A\ 16AA\ 8c\J 8cc/J 8ff\J 8ff\J 8ff\J 8ff\J 8cc/J
16G\JJ 16G\JJ 16GG\JJ

=2 =2 =2 =2 =2 =2 =2 =2 =2 =2

* * * * e * * * * * *_

Suppose we wanted to extract the cello part. In the above encoding, the ’cello occupies the sec-
ond spine (second field) from the left, hence:

extract -f 2 brandenburg2.krn

The resulting output would begin as follows:

Parts and Passages Page 105

!'1COM: Bach, Johann Sebastian
'1OPR: Six Concerts Avec plusieurs ... le prince regnant d’Anhalt-Coethen
1'10TL: Brandenburgische Konzerte F

! 1XEN: Brandenburg Concerto No. 2 in F major.
'1OMV: Movement 1.

11SCT: BWV 1047

! [Allegro]

**kern

*ICstr

*Icello

*IGcont

*IGripn

1'cello

*k[b-]

*F:

*M2/2

*MM54

*clefF4

8FF/

=1

16F\LL

16G\

etc.

Notice that the extract command outputs all global comments. In the case of local comments, ex-
tract outputs only those local comments that belong to the output spine.

The oboe and flauto dolce parts are encoded in spines 8 and 9. So we could extract the ‘cello,
oboe and flauto dolce parts by submitting a list of the corresponding fields. Spine numbers are

separated by commas:

extract -f 2,8,9 brandenburg2.krn

Numerical ranges can be specified using the dash. For example, if we wanted to extract all of the
string parts (spines 2 through 7):

extract -f 2-7 brandenburg2.krn

With the -f option, field specifications may also be made with respect to the right-most field. The
dollars-sign character ($) refers to the right-most field in the input. The trumpet part can be ex-

tracted as follows:
extract -f ’$’ brandenburg2.krn

(Notice the use of the single quotes to ensure that the shell doesn’t misinterpret the dollar sign.)
Simple arithmetic expressions are also permitted; for example ‘$ -1’ refers to the right-most field

minus one, etc. By way of example, the command

extract -f '$-2’ brandenburg2.krn

will extract the oboe part.

Page 106 Parts and Passages

Extraction by Interpretation

Typically, it is inconvenient to have to determine the numerical position of various spines in order
to extract them. With the -i option, extract outputs all spines containing a specified interpretation.
Suppose we had a file containing a Schubert song, including vocal score, piano accompaniment
and vocal text (encoded using * *text). The vocal text from the file 1ieder can be extracted as
follows:

extract -i "**text’ lieder

(Notice again the need for single quotes in order to avoid the asterisk being interpreted by the
shell.) Several different types of data can be extracted simultaneously. For example:

extract -i ’‘**semits,**MIDI’ hildegard
will extract all spines in the file hildegard containing * *semits or **MIDI data.

An important use of the -i option for extract is to ensure that a particular input contains only a
specified type of information. For example, the lower-case letter ‘r’ represents a rest in the
**kern representation. If we wish to determine which sonorities contain rests, we might want to
use grep to search for this letter. However, the input might contain other Humdrum interpretations
(such as **text) where the presence of the letter ‘r’ does not signify a rest. We can ensure that
our search is limited to * *kern data by using the extract command:

extract -i ‘**kern’ | grep

Both exclusive interpretations and tandem interpretations can be specified with the -i option. For
example, the following command will extract any transposing instruments in the score albeniz:

extract -i ‘*ITr’ albeniz

Tandem interpretations are commonly used to designate instrument classes and groups, so differ-
ent configurations of instruments are easily extracted. The Brandenburg Concerto shown in Exam-
ple 12.1 illustrates a number of tandem interpretations related to instrumentation classes and
groups. For example, the interpretation * ICww identifies woodwind instruments; *ICbras iden-
tifies brass instruments; *ICstr identifies string instruments. In addition, *IGcont identifies
“continuo” instruments; *IGripn identifies “ripieno” instruments; and *IGconc identifies
“concertino” instruments. The following three commands extract (1) the woodwind instruments,
(2) the ripieno instruments, and (3) any vocal parts, respectively.

extract -i ‘*ICww’ concertod
extract -1 ‘*IGrip’ brandenburg2
extract -i ’'*ICvox’ symphony?9

Once again, more than one interpretation can be extracted simultaneously. The following com-
mand will extract the instrument-class “strings” and the instrument “oboe” from the file mil-

haud.

extract -i ’'*ICstr, *Ioboe’ milhaud

Parts and Passages Page 107

Similarly, the following command will extract the shamisen and shakuhachi parts from a score:
extract -i ’*Ishami, *Ishaku’ hito.uta

The behavior of extract is subtly different for tandem interpretations versus exclusive interpreta-
tions. Remember that exclusive interpretations are mutually exclusive, whereas tandem interpreta-
tions are not. Consider the following Humdrum representation:

**foo
a
b
c
**bar

* N K

The command
extract -i "**foo’
will result in the output:

**foo

* 0 oo

Whereas the command
extract -i ’'**bar’
will result in the output:

**bar
X
Y

z
*

The **foo and * *bar data are mutually exclusive. Now consider an input file where foo and
bar are tandem interpretations:

**foobar
*foo

a

b

c

*bar

Page 108

* N KX

The command

extract -i ’'*foo’

will result in the output:

**foobar
*foo

Whereas the command

extract -i ‘*bar’

will result in the output:

**foobar
*foo
*bar

X

* N &K

When searching for a particular exclusive interpretation, extract resets each time a new exclusive
interpretation is encountered. By contrast, when extract finds a target tandem interpretation, it be-

Parts and Passages

gins outputting and doesn’t stop until the spine is terminated.

Using extract in Pipelines

Of course the output from extract can be used to generate inputs for other Humdrum tools. Here

are a few examples.

Recall that the census command tells us basic information about a file. With the -k option, census
will tell us the number of barlines, the number of rests, the number of notes, the highest and lowest
notes, and the longest and shortest notes for a **kern input. The following commands can be used
to determine this information for (1) a bassoon part, (2) all woodwind parts:

extract -i ‘*Ifagot’ ives | census -k
extract -i ‘*ICww’ ives | census -k

Parts and Passages Page 109

With the midi and perform commands, extract allows the user to hear particular parts. For exam-
ple, the following command extracts the bass and soprano voices, translates them to * *MIDI data,
and plays the output:

extract -i ‘*Ibass,*Isopran’ lassus | midi | perform

We might extract a particular part (such as the trumpet part) and use the trans command to trans-
pose it to another key:

extract -i ‘*Itromp’ purcell | trans -d +1 -c +2

In addition, we might extract a particular instrument or group of instruments for notational display
using the ms command. The following command will extract the string parts and create a
postscript file for displaying or printing.

extract -i ’'*ICstr’ brahms | ms > brahms.ps

The UNIX Ipr command can be used to print a file or input stream. Suppose we want to transpose
the piano accompaniment for a song by Hugo Wolf up an augmented second, and then print the

transposed part:

extract -i ‘*IGacmp’ wolf | trans -d +1 -c +3 | ms | lpr

Extracting Spines that Meander
As we saw in Chapter 5, spines can move around via various spine-path interpretations. Changes

of spine position will cause havoc when extracting by fields (the -f option); extract will generate
an error message and terminate. With the -i option, extract will follow the material throughout the

input.
Consider the following input:

**mip **dip **dip **blip

A a b b4

A a b x

* * N * *

A al a2 b X
A al a2 b X
A al az2 b X
* _ * * e * *

Suppose we want to extract the second spine (the first **dip) spine. Using the field option (-f)
will generate an error message since this spine splits. Similarly, using the interpretation (-i) option
will fail because the output will contain all of the * *dip spines.

The extract command provides a third -p option that traces specific spine paths. Like the -f op-
tion, the -p option requires one or more numbers indicating the beginning field position for the

spine. The command

Page 110 Parts and Passages

extract -p 2 ..

will generate the following output:

**dip

a

a

o~

al a2
al a2
al a2
* * _

In spine-path mode, the extract command follows a given spine starting at the beginning of the
file, and traces the course of that spine throughout the input stream. If spine-path changes are en-
countered in the input (such as spine exchanges, spine merges, or spine splits) the output adapts
accordingly. If the “nth” spine is selected, the output consists of the nth spine and follows the path
of that spine throughout the input until it is terminated or the end-of-file is encountered. What be-
gins as the nth column, may end up as some other column (or columns) in the input.

There are complex circumstances where the -p option will not guarantee an output that conforms
to the Humdrum syntax. When using the -p option it is prudent to check the output using the
humdrum command in order to ensure that the output is valid. A full discussion of the -p option
is given in the Humdrum Reference Manual.

Field-Trace Extracting

For circumstances where the input is very complex, extract provides a field-trace mode (-t option)
that allows the user to select any combination of data tokens from the input stream. The field-trace
option is rarely used when extracting spines. Refer to the Humdrum Reference Manual for further
information.

Extracting Passages: The yank Command

A useful companion to the extract command is the Humdrum yank command. The yank com-
mand can be used to selectively extract segments or passages from a Humdrum input. The yanked
material can be identified by absolute line numbers, or relative to some marker. In addition, yank
is able to output logical segments, such as measures, phrases, or labelled sections, and is able to
output material according to content. The output always consists of complete records; yank never
outputs partial contents of a given input record.

The yank command provides five different ways of extracting material. The simplest way of
yanking material is by specifying ranges of line numbers. In the following command, the -1 option
invokes the line-number operation. The -r option is used to specify the range. Ranges are defined
by integers separated by commas, or with a dash indicating a range of consecutive values. For ex-
ample, the following command selects lines, 5, 13, 23, 24, 25 and 26 from the file named casel-

la:

Parts and Passages Page 111

yvank -1 -r 5,13,23-26 casella

The dollar sign ($) can be used to refer to the last record in the input. For example, the following
command yanks the first and last records from the file mossolov.

yvank -1 -r ’1,$’ mossolov

Once again note that single quotes are needed here in order to prevent the shell from misinterpret-
ing characters such as the dollar sign or the asterisk. Records close to the end of the input can be
specified by subtracting some value from $. For example, the following command yanks the first
20 records from the last 30 records contained in the file ginastera. Notice that the dash/minus
sign is used both to convey a range and as an arithmetic operator.

yvank -1 -r ’'$-30-$-10' ginastera

If yank is given a Humdrum input, it always produces a syntactically correct Humdrum output.
All interpretations prior to and within the yanked material are echoed in the output. The yank
command also appends the appropriate spine-path terminators at the end of the yanked segment.
By way of example, if we yanked line 10 (containing 4 spines) and line 100 (containing 5 spines),
yank will include in the output the appropriate spine-path interpretations that specify how 4 spines
became 5 spines.

Yanking by Marker

Alternatively, yank can output lines relative to some user-defined marker. This mode of operation
can be invoked using the -m option. Markers are specified using regular expressions. The range
option (-r) specifies which lines are to be output whenever a marker is encountered. For example,
the following command outputs the first and third data records following each occurrence of the
string “XXX" in the file wieck.

yank -m XXX -r 1,3 wieck
If the value zero is specified in the range, the record containing the marker is itself output.
Since markers are interpreted by yank as regular expressions, complex markers can be defined.
For example, the following command yanks the first data record following any record in the file
franck beginning with a letter and ending with a number:

yvank -m ‘" [a-zA-2].* [Of9] $’ -r 1 franck
Using yank -m with a range defined as zero is an especially useful construction:

yank -m regexp -r O
This command is analogous to the familiar grep command. However, the output from yank will

preserve all of the appropriate interpretations. In short, yank guarantees that the output conforms
to the Humdrum syntax, whereas grep does not.

Page 112 Parts and Passages

Suppose, for example, that we wanted to calculate the pitch intervals between notes that either be-
gin or end a phrase in a monophonic input. If we use grep to search for **kern phrase indica-
tors, we will be unable to process the resulting (non-Humdrum) output, since it will typically con-
sist of just data records:

grep [{}] sibelius

By contrast, the comparable yank command preserves the Humdrum syntax and so allows us to
pipe the output to the melodic interval command:

yank -m [{}] -r 0 sibelius | mint

Yanking by Delimiters

It is often convenient to yank material according to logical segments such as measures or phrases.
In order to access such segments, the user must specify a segment delimiter using the -0 option or
the -0 and -e options. For example, common system barlines are represented by the presence of an
equals sign (=) at the beginning of a data token. Thus the user might yank specific measures from
a file by defining the appropriate barline delimiter and providing a range of (measure) numbers.
Consider the following command:

vank -o "= -r 1,12-13,25 joplin

This command will extract the first, twelfth, thirteenth and twenty-fifth measures from the file
joplin. Unlike the -m option, the -0 option interprets the range list as ordinal occurrences of
segments delineated by the delimiter. Whole segments are output rather than specified records as
is the case with -m. As in the case of markers, delimiters are interpreted according to regular ex-
pression syntax. Each input record containing the delimiter is regarded as the stzart of the next log-
ical segment. In the above command, the range (-r) specifies that the first, twelfth, thirteenth, and
twenty-fifth logical segments (measures) are to be yanked. All records starting with the delimiter
record are output up to, but not including, the next occurrence of a delimiter record.

Where the input stream contains data prior to the first delimiter record, this data may be addressed
as logical segment “zero.” For example,

vank -o "= -r 0 mahler

can be used to yank all records prior to the first common system barline. Notice that actual mea-
sure numbers are irrelevant with the -0 option: yank selects segments according to their ordinal
position in the input stream rather than according to their cardinal label.

Not all segments are defined by a single marker. For example, unlike barlines, * *kern phrases
are marked by separate phrase-begin signifiers (‘{’) and phrase-end signifiers (‘}*). The -e option
for yank can be used to explicitly identify markers that end a segment. For example, the following
command extracts the first four phrases in the file tailleferre:

vank -o { -e } -r '1-4’ tailleferre

Parts and Passages Page 113

When the -n option is invoked, however, yank expects a numerical value to be present in the input
immediately following the user-specified delimiter. In this case, yank selects segments based on
their numbered label rather than their ordinal position in the input. For example,

yank -n "= -r 12 goldberg

will yank all segments beginning with the label =12 in the input file goldberg. If more than
one segment carries the specified segment number(s), all such segments are output. That is, if
there are five measures labelled “measure 127, all five measures will be output. Note that the dol-
lar sign anchor cannot be used in the range expression for the -n option. Note also that input to-
kens containing non-numeric characters appended to the number will have no effect on the pattern
match. For example, input tokens such as =12a, =12b, or =12; will be treated as equivalent to
=12. '

As in the case of the -0 option, a range of zero (‘0’) addresses material prior to the first delimiter
record. (N.B. This behavior is unlike the -m option where zero addresses the record itself.) Like
the -0 option, the value zero may be reused for each specified input file. Thus, if filel, file2
and £ile3 are Humdrum files:

vank -n "= -r 0 filel file2 file3

will yank any leading (anacrusis) material in each of the three files.

Yanking by Section

When the -s option is invoked, yank extracts passages according to Humdrum section labels en-
coded in the input. Humdrum section labels will be described fully in Chapter 20. For now, we
can simply note that section labels are tandem interpretations that conform to the syntax:

*>label_name

Label names can include any character except the tab. Labels are frequently used to indicate for-
mal divisions, such as coda, exposition, bridge, second ending, trio, minuet, etc. The following
command yanks the second instance of a section labelled First Theme in the file

mendelssohn:
vank -s ‘First Theme’ -r 2 mendelssohn ‘

Note that with “through-composed” Humdrum files it is possible to have more than one section
containing the same section-label. Such situations are described in Chapter 20.

Examples Using yank

As mentioned earlier, yank will always produce a syntactically correct Humdrum output if given a
proper Humdrum input. All interpretations prior to, and within, the yanked material are echoed in

the output.

Page 114 Parts and Passages
Any comments prior to the yanked passage may be included in the output by specifying the -¢ op-
tion.
The following examples illustrate how the yank command may be used.
yvank -1 -r 1120 messiaen
yanks line 1120 in the file messiaen.
yank -n "= -r 27 sinfonia
yanks numbered measures 27 from the * *kern file sinfonia.
vank -n "= -r 10-20 minuet waltz
yanks numbered measures 10 to 20 from both the * *kern files minuet and waltz.
yvank -o "= -r ’0,$’ fugue ricercar
yanks any initial anacrusis material plus the final measure of both fugue and ricercar.
cat fugue ricercar | yank -o "= -r ‘0,S’

yanks any initial anacrusis material from the file fugue followed by the final measure of ricer-
car.

yank -n ‘Rehearsal Marking ’ -r 5-7 fugue ricercar
yanks segments beginning with the labels "Rehearsal Marking 5", "Rehearsal
Marking 6", and "Rehearsal Marking 7". Segments are deemed to end when a record
is encountered containing the text "Rehearsal Marking ".

vank -o { -e } -r '1-$’ webern

yanks all segments in the file webern beginning with a record containing “{” and ending with a
record containing “}.” The command:

vank -o { -e } -r "1-4,$-3-$’ faure
yanks the first four and last four segments in the file faure, where segments begin with an open
brace ({) and end with a closed brace (}). In the **kern representation, this would extract the
first four and last four phrases in the file.

vank -s Coda -r 1 stamitz

will yank the first occurrence of a section labelled Coda in the file stamitz.

Note that yanked segments are output in exactly the order they appear in the input file. For exam-
ple, assuming that measure numbers in an input stream increase sequentially, yank is unable to

Parts and Passages Page 115

output measure number 6 prior to outputting measure number 5. The order of output material can
be rearranged by invoked the yank command more than once (e.g. yank -1 -r 100 ...;
vank -1 -r 99 ...; vank -1 -r 98 ...).

Using yank in Pipelines

Like the other tools we have examined, yank can be profitably used in conjunction with other
Humdrum tools. It is often useful to employ more than one yank in a pipeline. In the following

command, the first yank isolates the “Trio’ section from the input file, and the second yank iso-
lates the first four measures of the extracted Trio:

vank -s Trio dvorak | yank -o "= 1-4

Similarly, we can link two yank commands to extract particular phrases from specified sections.
For example, suppose we wanted to compare the first phrase of the exposition with the first phrase
of the recapitulation:

vank -s Exposition haydn | yank -o { -e } -r 1 > Ephrase
yank -s Recapitulation haydn | yank -o { -e } -r 1 > Rphrase

Suppose we want to know how many notes there are in measures 8-16 in a **kern file named
borodin.

yank -n = -r 8-16 borodin | census -k
Are there any subdominant chords between measures 80 and 867

yank -n = -r 80-86 elgar | solfa | grep fa | grep la | grep do
How frequent is the dofninant pitch in Strauss’ horn parts?

extract -i ‘*Icor’ strauss | solfa | grep -c so

Combining yank and extract can be especially useful. What is the highest note in the trumpet
part in measure 29?7

extract -i ‘*Itromp’ tallis | yank -n = -r 29 | census -k

Also, we can combine yank with the midi and perform commands to hear particular sections.
Play the Trio section in a Waldteufel waltz:

vank -s ‘Trio’ -r 1 waldteufel | midi | perform
Listen to the soprano clarinet part in the fourth and eighth phrases.

extract -i ‘*Iclars’ guintet | yank -o { -e } -r 4,8 \
| midi | perform

Page 116 Parts and Passages

Note that when using yank to retrieve passages by markers (such as phrase marks), care must be
taken since markers may be miscoordinated between several concurrent parts. Example 12.2
shows a passage that has overlapping phrases. When trying to extract a particular phrase for a par-
ticular part, the outputs will differ significantly depending on whether the yank command is in-
voked before or after the extract command.

Example 12.2. A Passage Containing Unsynchronized Phrases.

**kern **kern

=1- =1~

2r 8r
{8g
8a

. 8b

=2 =2

8r 4cc

{8e .

8f 44dd}

8a .

=3 =

8g {dee

8e .

44} Aff

=4 =4

* *

The order of execution for some commands may cause some subtle differences. Suppose we
wanted to identify the melodic intervals present in measures 8-32 for some work by Sibelius. The
following two commands are likely to produce different results:

yank -n = -r 8-32 sibelius | mint
mint sibelius | yank -n = -r 8-32

In the second case, an interval will probably be calculated between between the last note of mea-
sure 7 and the first note of measure 8. This interval will be absent in the first case.

Reprise

In this chapter we have learned how to extract musical parts using extract and how to grab musi-
cal passages using yank. We saw that the extract command is also useful for isolating specific
types of information, such as the lyrics, or ensuring that no other type of information is present in
a data stream. In the case of yank we saw that passages can be extracted by defining arbitrary de-
limiters. In addition to extracting by measures, by sonorities, or by labelled sections, we can ex-
tract by rests, phrase marks — in fact, by any user-defined marker. We also saw how the com-
mand yank -m regular-expression -r 0 can be used as a more sophisticated version of grep — a
search tool that ensures the output will conform to the Humdrum syntax.

In the next chapter we will discuss how segments of music can be put back together again.

