Chapter 10

Musical Uses of Regular Expressions

Now that you have a better understanding of regular expressions, let’s apply them. This chapter
provides many examples of how regular expressions may be used to define musically useful pat-
terns. In subsequent chapters, we’ll make frequent use of regular expressions.

The grep Command (Again)

Although regular expressions are used in a number of Humdrum commands, they are most fre-
quently used in conjunction with the grep command encountered in Chapter 3. grep is a popular
software tool that is available from a number of manufacturers and sources. Many versions of
grep differ in the options provided. For example, the version of grep distributed by the GNU Soft-
ware Foundation provides no fewer than 19 options. Some of the most common options for grep
are identified in Table 10.1.

Table 10.1
-C count the number of lines matching the regular expression
-ffile search for patterns that are specified in file
-i ignore differences of upper- and lower-case
-1 just list the names of files containing a matching line
-n prefix each output line with its line number
-h suppress file-name prefixes (headers) in output when searching more than one file
-v display all lines not matching the regular expression
-L list names of files not containing the regular expression

Common options for the grep command.

Many of the predefined Humdrum representations make use of the “common system” for repre-
senting barlines. The following command counts the number of barlines in the file
czech37.krn. Note that the caret anchor () is used to avoid inadvertent matches of the equals
sign that might appear in Humdrum comments or interpretations.

grep -c "= czech37.krn
Recall that the dollar sign ($) can be used to anchor an expression to the end of the line. The fol-

lowing command determines whether numbered measure 9 is present in the file francel2.krn;
the dollar sign ensures that measure 9 is not mistaken for measure 90, 930, etc.

Musical Uses of Regular Expressions

grep "=9$ francel2.krn

The asterisk means “zero or more” instances of the preceding expression. For example, the fol-
lowing regular expression will match any reference record or global comment in the file
clara29:

grep '"111*’ clara29
Suppose we want to list all of the global comments for all files in the current directory:
grep ‘Ttirxs %

Notice that the two asterisks serve different functions in the above command. The first asterisk
means “zero or more instances” and is part of the regular expression passed to grep. The second
asterisk means “all files in the current directory” and is expanded by the shell. The first asterisk is
‘protected’ from the shell by the single quotes. Otherwise, the first asterisk might be expanded by
the shell to a list of all files in the current directory.

In regular expressions, the period character (.) matches any single character. For example, the ex-
pression ‘A. B’ will match strings such as ‘AXB’ and ‘AAB’ etc. The following command identi-
fies all eighth-notes containing at least one flat, and whose pitch lies within an octave of middle C.

grep 8.- *.krn

Frequently it is necessary to turn off the special meanings for metacharacters such as *, $, and *.
Recall that this can be done by inserting a backslash (\) immediately prior to the metacharacter.
In the **kern representation the caret signifies an accent. In a monophonic input, we might
count the number of notes that have a notated accent as follows:

grep -c ‘\"’ danmark3.krn

In the following command we have used the backslash to escape the special meaning of the aster-
isk. The -1 option causes grep to output only the names of any files that contain a line matching
the pattern. Hence, the following command identifies those files in the current directory that en-
code music in 9/8 meter:

grep -1 ‘"*M9/8’ *

Recall that square brackets can be used to indicate character classes where any of the characters in
the class can be used to match the expression. The following command identifies those files in the
current directory that encode music in either 3/8 or 9/8 meter:

grep -1 '*M[39]/8' *

One of the most frequently used regular expressions consists of the period followed by the asterisk
(. *). Recall that this expression will match any string including the null string (i.e. nothing at all).
This expression commonly appears between two other character strings. For example, we can
identify all files in the current directory whose instrumentation includes a trumpet:

Page 85

Page 86 Musical Uses of Regular Expressions

grep -1 "!!1!1AIN.*tromp’ *
The . * expression is needed since we don’t know what other instruments might be listed follow-
ing AIN and before tromp. Instrumentation reference records require that instrument codes ap-
pear in alphabetical order. This makes it easier to conduct searches for combinations of instru-

ments. For example, we can identify all scores in the current directory whose instrumentation in-
cludes both trumpet and cornet as follows:

grep -1 ‘!!!1AIN.*cornt.*tromp’ *
There are many variants on the use of the . * expression. The following command identifies all
files that contain a record having the word Drei followed by the word “Koenige”. (Notice the
use of the -i option in order to ignore the case of the letters.)

grep -1i ‘Drei.*Koenige’ *

This command will match such strings as: Die Heiligen Drei Koenige, Drei Koenige,
Dreikoenigslied, etc.

The ‘1! tAGN’ reference record is used to encode genre-related keywords. The following com-
mand lists all files that are ballads.

grep -1 ‘11 !AGN. *Ballad’ *

List all files that have the word Amour in the title:
grep -1i ‘!!1QLT.*Amour’ *

List any works that bear a dedication:
grep -1 '1!110DE:’ *

List those works that are in irregular meters:
grep -1 ‘1! IAMT.*irregular’ *

The -L option for grep causes the output to contain a list of files nor containing the regular expres-
sion. For example, we could identify those works that don’t bear any dedication:

grep -L ‘!!!QODE:’ *
List those works not composed by Schumann:
grep -L ‘!1!1COM: Schumann’ *
Identify any works that don’t contain any double barlines:

grep -L '“==' *

Musical Uses of Regular Expressions

How many works in the current directory are in simple-triple meter?
grep -c ‘! !!AMT.*simple.*triple’ *

When searching for more complex patterns it may be necessary to use grep more than once. Con-
sider, for example, the problem of identifying works whose titles contain both the words Liebe
and Tod. The first of the following commands will identify only those titles that contain Liebe
followed by Tod, whereas the second command will identify only those titles that contain Tod
followed by Liebe:

grep ‘!!110TL.*Liebe.*Tod’ *

grep ‘!!!10TL.*Tod. *Liebe’ *
A better solution is to pipe the output between two grep commands. Recall that the vertical bar
(‘]) conveyes or “pipes” the output from one command to the input of a subsequent command.
The following command passes all opus-title records (OTL) containing the word Liebe to a sec-
ond grep, which passes only those records also containing the word Tod. Since both grep com-

mands process the entire input line, it does not matter whether the word Tod precedes or follows
the word Liebe:

grep ’!!!0TL.*Liebe’ * | grep ’'Tod’
The -v option for grep causes a “reverse” or “negative” output. Instead of outputting all records
that match the specified regular expression, the -v option causes only those records to be output
that do not match the given regular expression. For example, the following command eliminates
all comments from the file polska24 . krn:

grep -v ‘7!’ polska24.krn
Similarly, the following command eliminates all whole-note rests:

grep -v lr *

The -v option is especially convenient in pipelines. For example, the following command identi-
fies all those files whose instrumentation includes a cornet but not a trumpet:

grep ‘!!!AIN.*cornt’ * | grep -v ‘tromp’

The following command identifies those works in compound meters that are not also quadruple
meters:

grep ‘!!1AMT.*compound’ * | grep -v ’‘quadruple’
Similarly, the following command identifies those notes that begin a phrase, but are not rests.

grep ‘"{' * | grep -v r

Page 87

Page 88 Musical Uses of Regular Expressions

German, French, Italian, and Neapolitan Sixths

In conjunction with the solfa command, grep can be used to search for various types of special
chords. Suppose, for example, that we wanted to identify occurrences of augmented sixth chords.
An augmented sixth chord is characterized by an augmented sixth interval occurring between the
lowered sixth scale-degree and the raised fourth scale-degree. In Chapter 4, we saw that the solfa
command represents pitches with respect to an encoded tonic pitch. In the **solfa representa-
tion, the lowered sixth and raised fourth degrees will be represented as 6~ and 4+ respectively.
First we translate the input to the **solfa representation, and then we search for records match-
ing the appropriate regular expression:

solfa input | grep ’‘6-.%*4+’

Notice that the expression ‘6-. *4+’ presumes that the lowered sixth degree is lower in pitch than
the raised fourth degree. For augmented sixth chords, this is a reasonable presumption. In the un-
likely situation that the raised fourth degree is lower in pitch than the lowered sixth degree, we
would need to also search for the expression ‘4+.*6-". Alternatively, we could use two separate
grep commands, eliminating the constraint of order:

solfa input | grep ’'6-’' | grep ‘4+’

Augmented sixth chords can be further classified as either German, French, or Italian sixths. The
German sixth contains the lowered mediant whereas the French sixth contains the supertonic
pitch; the Italian sixth contains neither:

solfa input | grep ’‘6-.*4+’' | grep ’‘3-’ # German sixth
solfa input | grep ’'6-.*4+’ | grep ‘2’ # French sixth
solfa input | grep ‘6-.*4+’ | grep -v ’[23]"’ # Italian sixth

A similar approach can be used to identify Neapolitan sixth chords. These chords are based on the
lowered supertonic with the third of the chord (unaltered subdominant) in the bass.

solfa input | grep ‘4["-+].*2-' | grep '6-' # Neapolitan sixth

Depending on the key, Neopolitan chords are sometimes notated enharmonically as a raised tonic
chord. Suppose we were looking for such enharmonically spelled Neopolitan chords:

solfa input | grep ‘3+.*1+’ | grep '5+’

Occassionally, Neapolitan chords are missing the fifth of the chord (the lowered sixth degree of the
scale). We might search for an example of such a chord:

solfa input | grep ‘2-’ | grep ‘4’ | grep -v ‘6-’

AND-Searches Using the xargs Command

In some cases, we want to identify those files that match two entirely different patterns (in differ-
ent records). Recall that the -1 option causes grep to output the filename rather than the matching

Musical Uses of Regular Expressions

record. If we could pass along these file names to another grep command, we could search those
same files for yet another pattern.

The UNIX xargs command provides a useful way of transferring the output from one command to
be used as final arguments for a subsequent command. For example, the following command
takes each file whose opus title contains the word Liebe and counts the number of phrases.

grep -1 ’!1!10TL:.*Liebe’ * | xargs grep -c ’'"{’

In this case the grep -1 command outputs a list of names of files containing the string Liebe in an
OTL reference record. The xargs command causes these filenames to be appended to the end of
the following grep command. The grep -c command will thus be applied only to those files al-
ready identified by the previous grep as containing Liebe in the title.

A set of such pipelines can be used to answer more sophisticated questions. For example, are
drinking songs more apt to be in triple meter?

grep -1 ’'!11AMT.*triple’ * | xargs grep -1 ‘!!!AGN.*Trinklied’
grep -1 ’!11AMT. *duple’ * | xargs grep -1 ’!!!1AGN.*Trinklied’
grep -1 '!!!AMT.*quadruple’ * | xargs grep -1 ’!!!AGN.*Trinklied’

Similarly, the following commands determine whether files whose titles contain the word death
are more apt to be in minor keys:

grep -1i ’1!1110TL.*death’ * | xargs grep -c '“*[a-gl[#-]1*:"’
grep -1i ’1!!!0TL.*death’ * | xargs grep -c '“*[A-G][#-]*:"’

Note that the xargs command can be used again and again to continue propagating file names as
arguments to subsequent searches. For example, the following command outputs the key signa-
tures for all works originating from Africa that are written in 3/4 meter:

grep -1 ‘!!!ARE.*Africa’ * | xargs grep -1 '"*M3/4’ \
| xargs grep ‘"“*k\[’

Similarly, the following command outputs the names of all files in the current directory that en-
code 17th century organ works containing passages in 6/8 meter:

grep -1 ’!1!0ODT.*16[0-91[0-9]/’ | xargs grep -1 \
"t ILIAIN.*organ’ | xargs grep -1 ’*M6/8’

Using the -L option allows us to form even more complex criteria by excluding certain works. For
example, the following variation of the above command outputs the names of all files in the cur-
rent directory that encode 17th century organ works that do not contain passages in 6/8 meter:

grep -1 ‘!!10ODT.*16[0-9]{0-91/’ | xargs grep -1 \
"1UIAIN. *organ’ | xargs grep -L ‘*M6/8’

Page 90 Musical Uses of Regular Expressions

OR-Searches Using the grep -f Command

In effect, the above pipelines provide logical AND structures: e.g. identify works composed in the
17th century AND written for organ AND containing a passage in 6/8 meter. The -f option for
grep provides a way of creating logical OR searches. With the -f option, we specify a file contain-
ing the patterns being sought. For example, we might create a file called criteria containing
the following three regular expressions:

111ODT.*16[0-9][0-9]1/
I'1'1AIN. *organ
*M6/8

We would invoke grep as follows:
grep -1 -f criteria *

The -f option tells grep to fetch the file criteria and use the records in this file as regular ex-
pressions. A match is made if any of the regular expressions is found.

The output would consist of a list of all files in the current directory that encode works composed
in the 17th century OR written for organ OR in 6/8 meter. The -f option is more typically used to
specify several variations of the same idea. For example, suppose we were searching for D major
triads in **pitch data. We could use a file containing the following regular expressions:

[DA] . *[FE£l#.*[Aa]
[DA] .*[Aa] .* [Ffl#
[FE]#.*[Aa].*[Dd]
[FE]1#.*[Dd].*[Aa]
[Aa] .*[DA] .*[Ff]#
[Aa] . *[FE]#.*[Dd]

Depending on the application, it may be easier to construct such pattern files than to use a lengthy
pipeline. That is:

grep -f Dmajor *
may be less cumbersome than:

grep [DA] * | grep [Ffl# | grep [Aa]
The -f option can be combined with -L. For example, suppose we wanted to identify all works in
the current directory that are not in the keys of C major, G major, B-flat major or D minor. Our

regular expression file would contain the following regular expressions:

“*[CGA] :
“*B-:

The corresponding command would be:

Musical Uses of Regular Expressions

grep -L -f criteria *

Another way of thinking of the -f option is that it allows us to define equivalences. Consider, for
example, the task of counting all of the notes in a **kern melody that belong to a particular
whole-tone pitch set. Let’s create two files, one called wholel and the other called whole2.
The file wholel might contain the following regular expressions:

[Ccl(["-#Ccl|$)
[DA] (["-#Dd] |$)
[Ee] (["-#Ee]|$)
[FEI#(["#1]%)
[Ggl-(["-1]$%)
[Ggl# ([#1]%)
[Aal-(["-1]9%)
[Aal#(["#]1]$)
[Bb]-(["-1]$%)

Notice that the regular expressions have been carefully defined. The first regular expression de-
fines a pattern consisting of either an upper- or lower-case letter ‘C’ followed either by a character
that is neither a sharp (#) nor a flat (-) nor another letter ‘C’, nor is followed by the end of the line

®.

Recall that parenthesis grouping (...) is part of the extended regular expression syntax. Therefore,
we should use the egrep rather than the grep command with the above expressions. We can count
the number of notes in a monophonic * *kern input that belong to this whole-tone set:

egrep -c¢ -f wholel debussy

If the file whole2 contains regular expressions for the complementary pitch set, we could similar-
ly count the number of pitches that belong to this alternative set:

egrep -c¢ -f whole2 debussy

Reprise

The grep command is usually thought of as a way to find particular patterns in a file or input
stream. However, the various options for grep (such as -v, -1, and -L) allow grep to be used for
other purposes. It can be used to isolate data, to count occurrences of patterns, to eliminate un-
wanted lines, to identify files for processing, and to avoid files that contain certain information.

We have seen how the xargs command can be used to carry out AND-searches where each work
must conform to multiple criteria. We have also seen how the -f option for grep can be used to
permit OR-searches where a work needs to conform only to one of a set of possible criteria.

Although this chapter has focussed principally on the grep command, the ensuing chapters will
show that regular expressions are used by a wide variety of commands. In Chapter 33, many more
powerful examples will be discussed in conjunction with the find command.

Page 91

