Chapter 3

Some Initial Processing

Now that we have learned some things about Humdrum representations (and the **kern repre-
sentation in particular), let’s explore some basic processing tasks.

The census Command

The Humdrum census command provides basic information about an input stream or file. We can
invoke the command by typing the command-name followed by the name of a file. The command:

census india0Ol.krn
might produce the following output:

HUMDRUM DATA

Number of data tokens: 91
Number of null tokens: 0
Number of multiple-stops: O
Number of data records: 91
Number of comments: 14
Number of interpretations: 7
Number of records: 112

Most commands provide options that will modify the operation of the command in a particular
way. In UNIX-style commands, options follow after the command-name and are typically speci-
fied by a single letter preceded by a hypen. The -k option with the census command will give fur-
ther information pertaining to the Humdrum * *kern representation. With the -k option, the out-
put includes the number of notes in the file, the longest, shortest, highest, and lowest notes, the
maximum number of concurrent notes or voices, the number of rests, and the number of barlines.

For example, the command:
census -k indiaOl.krn

might produce the following additional output:

Some Initial Processes

KERN DATA

Number of noteheads: 78
Number of notes: 78
Longest note: 1
Shortest note: 16
Highest note: cc
Lowest note: [
Number of rests: 1

Maximum number of voices: 1
Number of single barlines: 11
Number of double barlines: 1

Notice that a distinction is made between the number of notes and the number of noteheads. A
tied note is considered to be a single “note,” although it may be notated using two or more note-
heads.

The output from census can be restricted to a particular item of information by “piping” the output
to the UNIX grep command.

Simple Searches using the grep Command

The UNIX grep command is a popular tool for searching for lines that match some specified pat-
tern. Patterns may be simple strings of characters, or may be more complicated constructions de-
fined using the UNIX regular expression syntax. Regular expressions will be described in detail in
Chapter 9. The command-name “grep” is an acronym for “get regular expression.”

Useful patterns are often literal character strings, such as keywords. For example, the following
command identifies whether the file opus28 . krn contains the word “Andante”:

grep ‘Andante’ opus28.krn
Every line containing the specified pattern will be output. If no match is found, no output is given.

Using a single command, all files in the current directory can be searched by substituting the aster-
isk (shell wildcard) in place of the filename. The following command identifies all instances
where the word “Andante” occurs; all files in the current directory are searched:

grep ’'Andante’ *

Once again, every line containing the sought pattern is echoed in the output. If more than one pat-
tern is found, each instance of the pattern will be output on a separate line. Whenever a “wild-
card” is used as part of the filename, grep causes the name of each file to be prepended to the out-
put for all patterns that are found:

opus28:!! Andante
opus29:!! Andante
opus46:!! Andante

Page 21

Page 22 Some Initial Processes

opus9l:!! Andante
opus98:!! Andante

By default, grep distinguishes upper- and lower-case characters, so the above command will not
match strings such as “ANDANTE”. However, the -i option tells grep to ignore the case when
searching. E.g.,

grep -i ‘Andante’ *

Sought patterns may occur in any line, including data records and comments. The following com-
mand will identify the presence of any double-sharps in the file schumann . krn.

grep ‘##’ schumann.krn

Pattern Locations Using grep -n

If a pattern is found, it is sometimes helpful to know the precise location of the pattern. The -n op-
tion tells grep to prepend the line number for each matching instance. The following command
identifies the line numbers for lines containing a double sharp for the file melody . krn:

grep -n ‘##’ melody.krn
The output might look like this:

1109: {4g##
1731:16g##
3002:16f##

— meaning that double sharps were found in lines 1109, 1731, and 3002 in the file
melody.krn.

Counting Pattern Occurrences Using grep -c

In some cases, the user is interested in counting the total number of instances of a found pattern.
The -c option causes grep to output a numerical count of the number of lines containing matching
instances. For example, in the * *kern representation, the beginning of each phrase is marked by
the presence of an open curly brace (‘{’). So the following command can be used to count the
number of phrases in the file glazunov.krn:

grep -c ‘'{’ glazunov.krn

As noted, the grep command will search all lines (including comments) for matching instances of
the specified pattern. If a curly brace were to appear in a comment or other non-data record, then
our phrase-count would be incorrect. More carefully constructed patterns require a better knowl-
edge of regular expressions. Regular expressions are discussed in Chapter 9.

Some Initial Processes

Searching for Reference Information
As we saw in Chapter 2, Humdrum files typically encode library-type information using reference
records. For example, the composer’s name is encoded in a ! ! !COM: record, and the title is en-
coded via the ! ! 'OTL: record. In conjunction with the grep command, these three letter codes
provide useful tags to search for pertinent information. For example, the following command will
identify the composer for the file opus24 . krn:

grep ‘!!!1COM:’ opus24.krn
The output might look like this:

111COM: Boulanger, Nadia

Once again, wildcards (i.e., the asterisk) can be used to address all of the files in the current direc-
tory. Hence the command:

grep ‘1!I!COM:’' *

will produce a list of all composers of files in the current directory. Similarly, the following com-
mand will generate a list of all of the titles:

grep ‘!!!OTL:’ *

The output might look as follows:

fosterll:!!1!0TL: Oh! Susanna

fosterl2:!110TL: Jeanie with the Light Brown Hair
fosterl3:!!!10TL: Beautiful Dreamer

fosterl4:!!!0TL: Gwine to Run All Night (or ‘De Camptown Race’)
fosterl5:!!!10TL: My 0l1d Kentucky Home, Good-Night
fosterl6:!!'!0TL: We are Coming, Father Abraam
fosterl7:!!!0TL: Don’t Bet Your Money on De Shanghai
fosterl8:!!!0TL: Gentle Annie

fosterl9:!!!0TL: If You’'ve Only Got a Moustache
foster20:!!!0TL: Maggie by my Side

foster21:!!!10TL: 0ld Folks at Home

foster22:!!10TL: Better Times are Coming
foster23:!110TL: When this Dreadful War is Ended
foster24:!1!10TL: Hard Times Comes Again No More

Remember that when a wildcard is used in filenames, grep prepends the filename prior to found
patterns. These filename ‘headers’ can be eliminated by selecting the -h option for grep:

grep -h "!1110TL:’ *

(N.B. Some older versions of grep do not support all of the options described here. Filename
headers can be stripped from the output by using the UNIX sed described in Chapter 14.)

Page 23

Page 24 Some Initial Processes

‘We might place the resulting list of titles in a separate file using the UNIX file redirection construc-
tion. The output of a command can be placed into a file by following the command with a greater-
than sign (>) followed by a filename. For example, the following command places the output from
grep in a file called titles:

grep -h "1!110TL:’ * > titles

Beware that if the file t it les already exists then it will be over-written and its previous contents
lost. With the -h option the file t it 1les might contain the following lines:

'11O0TL: Oh! Susanna

110TL: Jeanie with the Light Brown Hair
1'10TL: Beautiful Dreamer

'1'0TL: Gwine to Run All Night (or ’‘De Camptown Race’)
'10TL: My 0ld Kentucky Home, Good-Night
110TL: We are Coming, Father Abraam

110TL: Don’t Bet Your Money on De Shanghai
'10TL: Gentle Annie

!0TL: If You‘ve Only Got a Moustache
'0OTL: Maggie by my Side

10TL: 0ld Folks at Home

10TL: Better Times are Coming

'10TL: When this Dreadful War is Ended
!110TL: Hard Times Comes Again No More

e b b bt e e sm b e tem e
= e tem e e 4o s 4 b bem = aem

The sort Command

The UNIX operating system provides a general sorting utility called sort. We might use this utility
to rearrange the titles in alphabetical order:

sort titles
Rather than using an intermediate file, we can directly connect the grep and sort commands using
a UNIX “pipe.” The vertical bar (|) creates a connection between the output of one command and

the input of the next command. We can combine the above two commands to create an alphabeti-
cal listing of all titles in the current directory:

grep ‘!!!0TL:’ * | sort

File-redirection can be added at the end of a pipe so the final output is captured in a file. In the
follow case, the alphabetized titles are placed in the file titles:

grep ‘!!'!'OTL:’ * | sort > titles

The uniqg Command

Bach often harmonized a chorale melody more than once. In the 185 chorales in the original 1784
edition, several duplicate titles are present. Suppose you want to create an alphabetical list of titles

Some Initial Processes

— but you want to exclude duplicate titles.

The UNIX uniq command provides a useful utility for eliminating duplication. Without any op-
tion, uniq simply eliminates any successive repeated lines. For example, given the input:

WNONRE R R

the uniq command will produce the following output:

1
2
3

Note that uniq only discards successive repeated records; an input such as the following would re-
main unmodified by the uniq command:

W R W e

Another important point about uniq is that successive lines must be exact repetitions in order to be
discarded. For example, if one line has a trailing blank that is not present in the previous line, then

the line is not discarded.

Returning to our problem of creating a list of unique titles for J.S. Bach’s chorale harmonizations,
we can use the following command pipeline.

grep -h “1!10TL:’ * | sort | unig

Note that our “pipeline” consists of three successive commands with the outputs connected to the
inputs using the UNIX pipe symbol (|). The sort command is essential in order to collect identical
titles as successive lines before passing the list to uniq.

Suppose you wanted to ensure that all of the works in the current directory are composed by the
same composer. The same command structure can be used, only we would search for reference

records encoding the composer’s name:
grep -h "!111COM:’ * | sort | unig

Even if the current directory contains hundreds of works by one composer (say Beethoven) and
just a single work by another composer, the presence of the odd score will be obvious without hav-

Page 25

Page 26 Some Initial Processes

ing to look through long lists:

11 1COM: Beethoven, Ludwig van
1'11COM: Stamitz, Carl Philipp

Of course we can make similar lists for other types of information available in reference records.
The AIN reference record encodes instrumentation. We could make a list of various instrumental
combinations used for scores in the current directory:

grep -h ‘!!!1AIN:’ * | sort | unig

Options for the uniqg Command

Like grep, the unig command provides several options that modify its behavior. The -d option
causes only those records to be output which are duplicated (i.e. two or more instances). Con-
versely, the -u option causes only those records to be output that are truly unigue (i.e. only a single
instance is present in the input).

Suppose, for example, that we want to know which of the Bach chorales are harmonizations of the
same tunes — that is, have the same titles. (Of course the same chorale might be known by two or
more titles, but let’s defer this problem until Chapter 25.) The -d option will only output the dupli-
cate records:

grep -h “!1110TL:’ * | sort | unig -d

The output will identify those titles which appear in two or more files in the current directory. The
output might look as follows:

1110TL: Befiehl du deine Wege

1110TL: Christ lag in Todesbanden

'0TL: Christus, der ist mein Leben
110TL: Das alte Jahr vergangen ist
110TL: Ein’ feste Burg ist unser Gott
110TL: Erbarm’ dich mein, o Herre Gott
110TL: Herr, ich habe missgehandelt
110TL: Herr, wie du willst, so schick’s mit mir
110TL: Ich dank’ dir, lieber Herre
1110TL: Jesu, der du meine Seele
1110TL: Jesu, meiner Seelen Wonne

Having established which titles are duplicates, a logical next step might be to identify the specific
files involved. We can use grep again to search for a specific title. Without the -h option, the out-
put will identify the appropriate filenames. For example:

grep ‘!!!0TL: Befiehl du deine Wege’ *

might produce the following output:

Some Initial Processes

bwv270.krn: ! ! !0TL: Befiehl du deine Wege
bwv271.krn:!!!0TL: Befiehl du deine Wege
bwv272.krn: ! 10TL: Befiehl du deine Wege

Sometimes we would like to have an output that contains only the filenames containing the sought
pattern. The -1 option causes grep to output only filenames that contain one or more instances of
the sought pattern:

grep -1 "!!110TL: Befiehl du deine Wege’' *
The output would appear as follows:

bwv270.krn
bwv271.krn
bwv272.krn

The -u option for uniq causes only unique entries in a list to be passed to the output. This is often
useful in identifying works that differ in some way from other works in a group or corpus. For ex-
ample, in some repertory, you may remember that a particular work had a different instrumenta-
tion than the other works. But you may not be able to remember what the specific instrumentation
was. Use the -u option for uniq to produce a list consisting of only those works whose instrumen-
tation differs from all others:

grep -h ‘!!I1AIN:’ * | sort | unig -u
As in the case of the grep command, uniq also supports a -¢ option which counts the number of
occurrences of a pattern. For example, if we want to count the number of works by each composer
in the current directory:

grep -h "!!10TL:’ * | sort | uniqg -c

The output might appear as follows:

9 11ICOM: Berardi, Angelo
2 111COM: Caldara, Antonio
12 !VICOM: Zarlino, Gioseffo
2 1!1!1COM: Sweelinck, Jan Pieterszoon
4 1'11COM: Josquin Des Pres

Notice that the number of instances is prepended to the reference records.

Incidentally, if we wanted to rearrange this list in order of the number of works, we could pass the
above output to yet another sort command. Since sort sorts from left to right, it will begin sorting
according to the numerical values at the extreme left. The command

grep -h "!!110TL:’ * | sort | unig -c | sort

will rearrange the above output as follows:

Page 27

Page 28 Some Initial Processes

2 !1!COM: Caldara, Antonio

2 111COM: Sweelinck, Jan Pieterszoon
4 111COM: Josqguin Des Pres

9 !11COM: Berardi, Angelo
12 111COM: Zarlino, Gioseffo

It is important to understand that the two sort commands in our pipeline achieve different goals
but use the same process. The first sort command sorts the composer’s names into alphabetical or-
der. This is done so that the ensuing uniq command is able to count successive identical records.
Since the uniq -c command prepends numerical counts, the subsequent sort sorts first according to
the numbers to the left of the reference records.

As a final note, we might mention that, like grep and uniq, the sort command has several options.
One option, the -r option, causes the output to be arranged in reverse order. This can be useful in
producing lists that are ordered from the most-common to the least-common.

Reprise

In this chapter we have introduced some elementary ways of processing Humdrum files. We noted
that the census command can be used to identify basic statistics about a file. The -k option for
census provides basic information related to **kern files — such as the number of notes and
rests, the highest and lowest notes, the number of barlines, etc.

In this chapter we also introduced simple searching techniques using the grep command; grep
provides a useful way of locating particular patterns of text characters in files. We used grep to
identify composers, titles, instrumentation and other information. Most of our examples were lim-
ited to searching for Humdrum reference records. In later chapters we will use grep in more so-
phisticated searches. We noted several useful options for grep: the -¢ option causes a count to be
output of the number of instances of the pattern in each file. The -i option causes grep to ignore
any distinction between upper- and lower-case characters when searching for patterns. The -h op-
tion causes grep to avoid outputting the filenames prior to found patterns when more than one file
is searched. The -l option results in only the filenames being output. In a later chapter we will en-
counter a number of other useful options provided by grep.

Also discussed in this chapter was the uniq command; uniq provides a useful utility for eliminat-
ing or isolating duplicate records or lines. Once again a number of useful options were introduced.
The -c option causes uniq to prepend a count of the number of duplicate input lines. The -d op-
tion results in only duplicate input lines being noted in the output. The -u option does the reverse:
only those input lines that are unique are passed to the output.

Finally, we introduced the UNIX sort utility. This command rearranges the order of successive in-
put lines so they are in alphabetic/numeric order. The sort command provides a wealth of useful
options; however, we mentioned only the -r option — which causes the output to be sorted in re-
verse order.

