Section 7

Development Reference

#"hr

Command Documentation Style

This section of the Reference Marnual offers advice and direction for those users wanting to
expand or taillor Humdrum so as to better suit a given application. Two types of extensions are
possible. First, the user may define one or more new representation schemes that better represent
the types of intormation of interest. For example, the user might define a new Humdrum
representation scheme suitable for representing North Indian tabla bols. Second, users might
wish to develop new software tools that manipulate one or more Humdrum representations in
some fashion. For example, the user might create a command that identifies the roots of chords.

The ensuing section is divided into two parts. The first part (Representation Development)
provides guidelines for defining new Humdrum representations. The second part (Software
Development) provides tips for writing adjunct software; a standard program skeleton 1is
described.

Page 509

Humdrum (7) oo Development Reference oo

1. Humdrum Representation Development

"h

1.1 Representation Assumptions

Three principle assumptions underly the Humdrum syntax. As with all design assumptions, these
principles inevitably act as limitations — circumscribing what is possible.

The first assumption i1s that the information can be adequately represented using discrete
rather than continuous signifiers. This is a limitation of all symbolic as opposed to analogic
representations. If continuous data (such as conducting gestures, or analog sound) are to be
represented using Humdrum, the data must be somehow transformed into a discrete form.

The second assumption is that information can be meaningfully organized as ordered
successions of data tokens. More concretely, it is assumed that data can be arranged in linear
spines, and that these spines are interpretable. This limitation implies that data tokens can be
meaningfully ordered. Normally, time (as in sequences of events), or space (as in successive
printed signs) provide suitable ordering devices. However, events that are conceived as entirely
independent of one another are difficult to represent in Humdrum.

The third assumption 1s that the ASCII character set provides sufficient richness to act as an
appropriate set of signifiers. In practice, this third assumption proves to be the most limiting. The
use of alphabetic and numeric characters is itself of little concern; as Saussure pointed out, the
choice of symbols is arbitary and conventional. Of greater concern is the limitation of size.
There are some 128 characters in the basic ASCII set — not all of them are printable.

The size restriction 1mposed by the ASCII character set might be circumvented by using
binary, pictoral or other signifiers. However, there are currently significant advantages to using
ASCII signifiers. The principal advantage is that many important software tools already exist for
the manipulation of ASCII text. The principal disadvantage of ASCII is addressed in Humdrum
by allowing users to recycle the ASCII characters an indefinite number of times — through the
use of new exclusive interpretations. Note that if all representation schemes use ASCII signifiers,
then any software tool developed for the manipulation of ASCII text can be applied immediately
to any Humdrum representation. This approach discourages the explosive proliferation of
specialized software (each dealing with a unique representation), and encourages users to rely on
a smaller toolkit consisting of more generalized and flexible tools. More precisely, this approach
reduces the demands tor software development while maximizing the range of tasks to which a
user’s skills may be applied.

An alternative to Humdrum’s provision for multiple representations would be to provide a
single representation, with greater contextual constraints on the positioning of signifiers.
Unfortunately, high levels of context dependency end up placing an inordinate burden on
- software development and use. Humdrum attempts to simplify software development by
minimizing as much as possible context-dependent meanings for signifiers.

1.2 Creating New Humdrum Representations

The Humdrum syntax provides a framework within which different music-related symbol-systems
can be defined. Each symbol system or representation scheme is denoted by a unique exclusive

Page 510

 Development Reference oo Humdrum (7)

interpretation. There 1s no restriction on the number of schemes that can be used or created
within Humdrum. Humdrum users are consequently free to design new representation schemes
that address various needs.

Many newly created representation schemes are apt to be user-specific — ways of
organizing or representing information that are not likely to be of much value to other Humdrum
users. In other cases, a well crafted representation scheme will prove to be of benefit to a wider
community of users. Whether a new Humdrum representation scheme is intended for private use
or for public distribution, it 1s prudent to develope good design habits. There is no such thing as a
“perfect” representation, but it 1S possible to distinguish poor representations from better
representations.

There are a number of considerations involved in the lucid design of a Humdrum
interpretation. In general, the procedures involved in representation design can be summarized as
follows:

1. Identity as clearly as possible the goal or goals you hope to achieve using this new
representation. Formulate a list of questions you expect to be able to answer or address.

2. Create a list of the essential signifieds (concepts to be represented) that are needed to
pursue the goal(s).

3. Make a supplementary list of related signifieds that seem peripheral to the immediate
goal(s), but might prove important in pursuing related goals.

4. By examining the lists of essential and related signifieds, try to identify and define the class
or classes of information with which you are dealing.

5. Identify whether the signifieds of immediate interest belong together in a single
representation, or whether they ought to be split into two or more Humdrum interpretations.

6. Having established a clearer understanding of the class of signifieds, trim the previous lists
of signifieds to a single list.

7. Idenuty those signifieds that may take many variant forms (as, for example, musical
ornament symbols). Determine whether these vartant forms are finite, infinite or unknown
in number. If the number is infinite or unknown, a single signifier should be used — with
provision for an auxilliary representation that can be used to identify the specific variant
form.

8. Assign signifiers to all signifieds using the supply of available ASCII characters. In
general, assign only a single character for each signified. Using individual ASCII
characters as signifiers helps eliminates context dependency, and so reduces the complexity
of the software needed to process the representation.

9. In assigning signifiers to signifieds, try to avoid English language initialisms (such as Q for
quarter-note), since these mappings are poor mnemonics for non-English-speaking users.

Some of the “do’s” and “dont’s” of designing a Humdrum interpretation can be illustrated
by considering a hypothetical representation problem. Below, we consider how to design a
representation for keyboard fingering.

Page 511

Humdrum (7) o Development Reference oo

1.3 Defining a New Humdrum Interpretation: A Sample Problem

Suppose that we are interested in providing a comprehensive representation scheme for fingering
keyboard instruments. More concretely, let’s suppose that we are interested in studying the
degree of performance difficulty for various keyboard works. Our goal might be to compare the
relative difficulty of works by different composers, or whether a given musical arrangement is
easier to pertorm than another arrangement. We might imagine, for example, writing a program
which, given some knowledge of performance constraints, could accept fingering information as
mput and produce as output an index of the degree of difficulty. At a later stage, we might
imagine creating an “intelligent” fingering program that could be used to determine an optimum
way of fingering a particular keyboard passage. (Such a program might even be designed to take
Into account the unique physiological abilitics, constraints, or preferences of a given performer.)
In summary, our first research goal would use our “fingering” representation as an input to some
analysis program, whereas our second research goal might produce the “fingering” representation
as output.

Having 1dentified the above goals, our next task 1s to identify the essential signifieds that
would be needed to solve these problems. The most basic information we want to represent
includes:

1. The identity of the finger and hand used in each key-press.
2. Thedentity of the key used in each key-press.

3. The order or sequence of key-presses.

4. The timing of each activity or movement.

Having identified what we see as the essential signifieds, we ought to pause and consider
related signifieds that, although they appear to be peripheral to our goals, might prove important
1In pursuing related goals. By thinking ahead about these other signifieds, we might avoid future
difficulties should we discover that another item of information proves crucial to our enterprise.

Some potential properties or attributes that we might consider representing could include
the following:

1. The torce or velocity with which the key is pressed.
Whether the hands are crossed — and if so, which arm is placed above the other.
What part of the finger/hand is used to press the key (e.g. knuckles).

Whether more than one finger is used to press the same key together.

A

Whether one (or more) finger is substituted for another finger in the course of holding a
depressed key.

6. Whether trills are notated as a precise sequence of finger presses, or whether they are
recorded as generic “trills.”

7. Whether “Bebung” is used — that 1s, whether lateral or vertical pressure is applied once the
key 1s depressed.

8. Whether a second performer can be accommodated (as in the case of a piano duet).

Page 512

o Development Reference oo Humdrum (7)

9. Physiological or anatomical attributes of the performer (such as hand-spans).

10. Pedalling. T
A list of related signifieds is rarely likely to be exhaustive or complete. So it is important to take
time to consider other possible types of information that relate to keyboard fingering.

In the imtal stages of designing a Humdrum representation, it is generally wise to try to
formulate a fairly exhaustive list of possible pertinent attributes. The purpose of such a list is to
ensure that an informed decision 1s made regarding those properties we wish to include in the
representation, and those properties we propose to exclude. More specifically, our goal is to
exclude information on the basis of an explicit decision rather than due to a tacit oversight.

Given the above list of potential signifieds, the next step is to pause and consider the nature
of the class of information we wish to deal with. For example, the idea of “pedalling” raises an
interesting representation question. Are we trying to represent keyboard fingering? Or is our task
the representation of keyboard performance? Pedalling is obviously part of keyboard
performance, but not something fingers do. Are we mistaken in thinking that our representation
task 1s limited to fingering? Also, since larger arm and body movements are essential aspects of
good performance, should we also consider representing these additional factors?

In light of our goal of measuring performance difficulty, we would have to admit that
pedalling can indeed contribute to the physical challenge arising from performing a given work.
In terms ot our research task therefore, it makes sense to include pedalling information. However,
we might balk at the prospect of mixing fingering and pedalling within a single representation —
especially since some keyboard instruments (€.g. clavichord) have no pedals. Moreover, the
pedals on a piano differ considerably from the pedals on an organ, although both contribute to
overall performance difficulty.

At this point, we are invited to consider whether the various signifieds in the above list
truly belong together in a single representation, or whether they ought to be split into two or more
Humdrum interpretations. The above discussion suggests that we might distinguish at least five
classes of mformation: performance (broadly construed), fingering, body movement, pedal-
boarding (as on the organ), and pedalling (as on the piano or harpsichord). Morecover, we might
define “performance information” as the combination of fingering plus pedalling or pedal-
boarding. In short, it would make sense to define three representations: fingering, pedalling, and
pedal-boarding, and to assume that our program measuring performance difficulty will accept any
combination of one or more of these three classes of information.

Our task has clearly expanded somewhat, since now we need to consider three types of
representation rather than one. For the purposes of this tutorial example, we might set aside the
problems of representing pedalling and pedal-boarding and focus on the fingering aspect of
keyboard performance.

Now that we have a clearer understanding of the class of signifieds, we can begin to trim
the lists of signifieds to a single short list. We have decided not to represent pedalling using the
same Humdrum interpretation as for fingering. We might also decide that the fingering activity
for a second pertormer can be represented using a second independent spine of information. We
might also dispense with representing the force or velocity of key-depression, and what part of
the finger/hand 1s used to press the key. We might have decided to represent the fingering for
trills, but not to encode cach key-stroke of the trill scparately. We could also decide that
representing physiological attributes of the performer (such as hand-spans) ought to be left as a

Page 513

Humdrum (7) Development Reference oo

separate representation. Finally, we might have also decided not to represent Bebung. This
leaves a trimmed list of eight types of signifieds»~

1. The identity of the finger and hand used in each key-press.
The 1dentity of the key used in each key-press.
The order or sequence of key-presses.

The duration of each activity or movement.

Whether more than one finger 1s used to press the same key together.

2
3
4
5. Whether the hands are crossed — and if so, which arm is placed above the other.
6
7. Whether finger substitution occurs.

3

The fingering for trills.

Before going on to map signifiers and signifieds we need to consider those signifieds that
may take variant forms. What sort of “variations” might appear in a fingering representation? An
obvious form of variation occurs when alternative fingerings are possible — that is, where a
passage contains (wo (or more) ways of assignming key-presses to different fingers. Our first task
here 1s to determine whether the number of variant forms is finite, infinite, or unknown in number.
We can consider this question both at the level of the individual key-press, and at the level of the
entire work. In the case of the individual key-press, the maximum number of variants is ten —
since there are no more than ten fingers. If more than one finger is used to press a key, or if
finger-substitutions occur, then the maximum number of variants is somewhat more than ten —
although still finite in number. At the level of the entire work, the maximum number of variants
is potentially very large (at least 10 X the total number of key-presses in the work). Nevertheless,
this number remains a finite value for works of finite length. The question arises, do we want our
fingering representation to represent a single performance of a keyboard passage, or is the
representation 1ntended to represent alternative forms of performance?

In order to answer this question we must return once again to our initial goals. In analysing
the degree of performance difficulty for a work, we might prefer to analyse a single (actual or
plausible) performance. Measuring the degree of performance difficulty for a class of variant
performances 1s apt to prove difficult. On the other hand, the musical score for a keyboard work
may contain no fingering indications whatsoever. Therefore it would be wrong to assume that a
single fingering specificaiion would give an accurate indication of the performance difficulty for a
given musical work. This raises the question of whether our intention is to measure the
performance ditficulty of a specific sequence of key-presses used in a performance, or whether
our 1ntention 1s to measure the performance difficulty of a particular musical work.

As noted above, measuring the difficulty for a class of variant performances is likely to
prove difficult. There are many many ways of fingering a keyboard work. Averaging the
performance difficulty for the complete class of possible fingering arrangements would appear
silly since most of these fingerings would be awkward. One could argue, for example, that the
degree of performance difficulty for a work can be best established by analysing the single most
convenient way of fingering the work. Alternatively, one could argue that the degree of
performance ditficulty for a work can be determined by examining a handful of the most
convenient ways of fingering the work. Out of the large number of possible fingerings, it is only
the plausible fingerings that really count.

Page 514

oo Development Reference oo Humdrum (7)

Whether our intention i1s to measure a single fingering sequence or a class of such
fingerings, a helpful question to consider here is-where do we expect to get our fingering data?
Three sources come to mind: (1) recorded fingering data from an actual performance, (2)
fingerings (including alternatives) notated in printed scores or annotated by keyboard performers,
and (3) fingering data (including alternatives) generated by a computer program. In the case of an
actual performance, there will be only one fingering. The other sources can potentially produce
more than one fingering at a time.

Having 1dentified those attributes that we wish to represent, we need to consider how the
representation ought to be structured. Specifically, we need to consider how our fingering
representation can be coordinated with other Humdrum interpretations. The most important
coordination task 1s ensuring that our representation will correspond well with the core **kern
representation. Each data record in **kern represents a single sonority — a moment in time
that differs from the previous state. Since key-presses are closely related to notes, we might want
to coordmate each of the **kern note tokens with possible key-presses. Many Humdrum
pitch-related representations include barlines — which are useful markers for coordinating such
representations. This suggests that it might be useful to include barlines in our fingering
representation. Given both the barline and note-token/key-press correspondences, we should
have little difficulty ensuring that our fingering representation will be fully coordinated with a
number of other Humdrum representations.

We are now ready to consider how to map our signifieds with a set of appropriate signifiers.
In general, we should endeavor to define one signifier for each attribute. First, consider how we
might identify the individual fingers. A good system would be to identify each finger by a unique
signifier — such as a unique decimal integer. However, there is a long-standing tradition of
1dentitying the thumb of each hand as the number "1", the index finger by the number "2" and so
on. Given the limited number of fingers, some context-dependency may be appropriate here. In
short, we may decide to identify specific fingers through a ligature of “hand+finger” — e.g. left-3
or right-5. The signifiers “left” and “right” obviously introduce an English bias. It would be
better to consider more universally recognized terms such as “mano destra” (MD) and “mano
sinistra” (MS). However, not every user will find these is terms familiar or comfortable.

We need not rely on a literalism or initialism. “Left” and “right” are concepts that lend
themselves well to pictorial representation, so we might consider using those ASCII characters
that convey a left-right pictorial dimension. Possible contenders would include various letter-
contrasts: d versus b, J versus L; the three types of parentheses: (versus), { versus },
and [versus]; and the greater-than and less-than signs: < versus >. The letter contrasts J
versus L are especially poor since although the angle of the letter L is drawn to the right, “L”
implies an 1nitialism for “left” — and so is apt to cause confusion. The parentheses cannot be
misconstrued as literalisms or initialisms, so they are somewhat better signifiers. However the
greater-than and less-than signs are the mostly clearly arrow-like, and so perhaps provide a better
pair of left-right signifiers.

Having decided upon the signifiers for left and right, and having adopted the tradition of
numbering the fingers (1=thumb, 2=index, 3=middle, 4=ring, S5=little}), we could continue
mapping signifiers to signifieds, taking care to minimize context dependency.

In reflecting on the above discussion, readers are apt to feel that one or another type of
information ought to have been included, or that the signifiers ought to be assigned in a different
manner. Since Humdrum provides a framework within which alternative representation schemes

Page 515

Humdrum (7) Development Reference oo

can be designed, there i1s no need to defend a given representation from competing schemes.
Whether an interpretation survives and proliferates will be determined, not by its conceptual
elegance or completeness, but by whether 1t 1s found to have a practical utility in solving users’

problems.

Page 516

oo Development Reference oo Humdrum (7)

2. Humdrum Software Development

The Humdrum toolkit is necessarily limited in sE-ope and there are many functions that users will
wish to add. In developing adjunct software tools, 1t 1s imperative that the software conform to
the tollowing design conventions:

1.
2.

10.

11.

12.

13.

14.

15.

Programs should be general-purpose and adapt to a wide variety of input circumstances.

If possible, programs should be able to process any Humdrum input rather than be limited
to a given type of input interpretation.

Command names should be limited to 8 characters in length 1n order to ensure portability to
DOS systems.

Command names should preferably be the same as the output interpretation produced by
the command.

Command names should not be unduly abbreviated since infrequently used software 1s less
easily remembered than frequently used system commands.

The command syntax should conform to standard POSIX conventions.

Errors and warnings should be prefaced by giving the name of the program or command
which 1ssues the error message. ¢.g.

vox: ERROR: voice 3 begins with a null token.

Errors messages should be sent to “stderr” rather than to the standard output.

Wherever possible, “filter’ programs should produce outputs that are identical in structure
to the mput. More specifically, input line numbers should correspond to output line
numbers — where appropriate.

Comments, mterpretations, barlines, and double barlines should be echoed in the output as
the default condition (except in the case of formatted non-Humdrum outputs).

For many programs, the user should be able to skip the processing of certain types of tokens
(such as barlines) by specifying a -s flag — followed by a user-defined regular expression.
Tokens matching the regular expression should be echoed unprocessed in the output stream.

Programs should handle spine-path changes in a fashion appropriate to the nature of the
command.

Comments and interpretations should be identified by explicitly matching the exclamation
mark or asterisk in the first column of the input data token. Exclamation marks and
asterisks are legitimate data signifiers when not occurring in the first column of an input
token.

Where possible, outputs should not be formatted with descriptive labels etc. The preferred
output format 1s to have all outputs conform to the Humdrum syntax. This ensures that all
outputs can themselves be used as inputs to other Humdrum programs.

Programs should generally avoid assumptions concerning context-dependent inputs. Inputs
should be assumed to be context-free.

Page 517

Humdrum (7) o Development Reference oo

16. Programs should be able to handle inputs with unexpected user extensions or
representational addenda — such as the presence of spurious or unknown characters.

17. Programs that search or examine inputs for certain features, properties, or errors should
return a nudl output if nothing i1s found. Messages indicating that ‘nothing was found’
should be avoided. “Silence 1s golden.”

Page 518

< Development Reference oo Humdrum (7)
2.1 Standard Program Skeleton

Much of the Humdrum software was originally developed using the AWK programming
language. AWK was designed by Alfred Aho, Brian Kemighan, and Peter Weinberger.t It is
syntactically very similar to the C programming language, but is easier to use and promotes better
sottware productivity. AWK provides powerful text manipulation features that make it admirably
suited to the creation of Humdrum software. AWK 1s also a very easy language to learn, and is an
excellent first language for novice programmers.

The Humdrum Toolkit includes programing skeletons that may provide a useful starting
place for software development using AWK. Two skeleton files are provided with the toolkit:
skeleton.ksh and skeleton.awk. The kornshell file (. ksh) parses the command line, issues
appropriate error messages if the command is improperly invoked, displays a help screen if
necessary, and assembles the command parameters to invoke an awk script for the command
(.awk).

The skeleton.awk skeleton contains a main loop that is normally executed for each
record of mput. A scries of useful functions are included in the AWK skeleton program. These
tunctions include:

Parse command. This function checks that the input passed from the corresponding komshell
script for the command. The Parse_command function contains a list of valid options and
assigns the passed parameters to the appropriate option variables.

Store_indicators. This function allows the spine-path indicators for the current record to be
stored 1n the array path indicator so that they may be used later.

Store _new _interps. This function stores the new interpretations found in an interpretation record
for each spine.

Process indicators. This function takes the spine-path indicators that were stored in the array
‘path_indicator’ 1n the function ’store_indicators’ and manipulates the arrays
‘path_indicator’ and ’current_interp’ according to the contents of the array
‘path_indicator’.

Ins array pos. This function inserts new positions 1n the arrays ’path_indicator’,
‘current_interp’, and ‘current_key’ and copies elements so that everything is preserved

Del array pos. Performs the opposite of function ’ins_array_pos’.

Exchange spines. This tunction exhanges two spines by exchanging the corresponding elements
in current_interp.

T Aho, A., Kemighan, B. & Weinberger, P. The AWK Programming Langauge. Reading, Massachusetts: Addison-
Wesley Publishing Co. 1988.

Page 519

Bibliography

Zwicker, E., Flottorp, G. & Stevens, S. S.

“Critical bandwidth in loudness summatiors” Journal of the Acoustical Society of America,
Vol. 29, No. 5 (1957) pp. 548-557.

Page 525

._q.'

	grepage012.gif
	grepage011.gif
	grepage010.gif
	grepage009.gif
	grepage008.gif
	grepage007.gif
	grepage006.gif
	grepage005.gif
	grepage004.gif
	grepage003.gif
	grepage002.gif
	grepage001.gif
	yage001.gif
	yage002.gif
	yage003.gif
	yage004.gif
	yage005.gif
	yage006.gif
	yage007.gif
	yage008.gif
	yage009.gif
	yage010.gif
	yage011.gif
	yage012.gif
	yage013.gif
	yage014.gif
	yage015.gif
	yage016.gif
	yage017.gif
	yage018.gif
	yage019.gif
	yage020.gif
	yage021.gif
	yage022.gif
	yage023.gif
	yage024.gif
	yage025.gif
	yage026.gif
	yage027.gif
	yage028.gif
	yage029.gif
	yage030.gif
	yage031.gif
	yage032.gif
	yage033.gif
	yage034.gif
	yage035.gif
	yage036.gif
	yage037.gif
	yage038.gif
	yage039.gif
	yage040.gif
	yage041.gif
	yage042.gif
	yage043.gif
	yage044.gif
	yage045.gif
	yage046.gif
	yage047.gif
	yage048.gif
	yage049.gif
	yage050.gif
	yage051.gif
	yage052.gif
	yage053.gif
	yage054.gif
	yage055.gif
	yage056.gif
	yage057.gif
	yage058.gif
	yage059.gif
	yage060.gif
	yage061.gif
	yage062.gif
	yage063.gif
	yage064.gif
	yage065.gif
	yage066.gif
	yage067.gif
	yage068.gif
	yage069.gif
	yage070.gif
	yage071.gif
	yage072.gif
	yage073.gif
	yage074.gif
	yage075.gif
	yage076.gif
	yage077.gif
	yage078.gif
	yage079.gif
	yage080.gif
	yage081.gif
	yage082.gif
	yage083.gif
	yage084.gif
	yage085.gif
	yage086.gif
	yage087.gif
	yage088.gif
	yage089.gif
	yage090.gif
	yage091.gif
	yage092.gif
	yage093.gif
	yage094.gif
	yage095.gif
	yage096.gif
	yage097.gif
	yage098.gif
	yage099.gif
	yage100.gif
	yage101.gif
	yage102.gif
	yage103.gif
	yage104.gif
	yage105.gif
	yage106.gif
	yage107.gif
	yage108.gif
	yage109.gif
	yage110.gif
	yage111.gif
	yage112.gif
	yage113.gif
	yage114.gif
	yage115.gif
	yage116.gif
	yage117.gif
	yage118.gif
	yage119.gif
	yage120.gif
	yage121.gif
	yage122.gif
	yage123.gif
	yage124.gif
	yage125.gif
	yage126.gif
	yage127.gif
	yage128.gif
	yage129.gif
	yage130.gif
	yage131.gif
	yage132.gif
	yage133.gif
	yage134.gif
	yage135.gif
	yage136.gif
	yage137.gif
	yage138.gif
	yage139.gif
	yage140.gif
	yage141.gif
	yage142.gif
	yage143.gif
	yage144.gif
	yage145.gif
	yage146.gif
	yage147.gif
	yage148.gif
	yage149.gif
	yage150.gif
	yage151.gif
	yage152.gif
	yage153.gif
	yage154.gif
	yage155.gif
	yage156.gif
	yage157.gif
	yage158.gif
	yage159.gif
	yage160.gif
	yage161.gif
	yage162.gif
	yage163.gif
	yage164.gif
	yage165.gif
	yage166.gif
	yage167.gif
	yage168.gif
	yage169.gif
	yage170.gif
	yage171.gif
	yage172.gif
	yage173.gif
	yage174.gif
	yage175.gif
	yage176.gif
	yage177.gif
	yage178.gif
	yage179.gif
	yage180.gif
	yage181.gif
	yage182.gif
	yage183.gif
	yage184.gif
	yage185.gif
	yage186.gif
	yage187.gif
	yage188.gif
	yage189.gif
	yage190.gif
	yage191.gif
	yage192.gif
	yage193.gif
	yage194.gif
	yage195.gif
	yage196.gif
	yage197.gif
	yage198.gif
	yage199.gif
	yage200.gif
	yage201.gif
	yage202.gif
	yage203.gif
	yage204.gif
	yage205.gif
	yage206.gif
	yage207.gif
	yage208.gif
	yage209.gif
	yage210.gif
	yage211.gif
	yage212.gif
	yage213.gif
	yage214.gif
	yage215.gif
	yage216.gif
	yage217.gif
	yage218.gif
	yage219.gif
	yage220.gif
	yage221.gif
	yage222.gif
	yage223.gif
	yage224.gif
	yage225.gif
	yage226.gif
	yage227.gif
	yage228.gif
	yage229.gif
	yage230.gif
	yage231.gif
	yage232.gif
	yage233.gif
	yage234.gif
	yage235.gif
	yage236.gif
	yage237.gif
	yage238.gif
	yage239.gif
	yage240.gif
	yage241.gif
	yage242.gif
	yage243.gif
	yage244.gif
	yage245.gif
	yage246.gif
	yage247.gif
	yage248.gif
	yage249.gif
	yage250.gif
	yage251.gif
	yage252.gif
	yage253.gif
	yage254.gif
	yage255.gif
	yage256.gif
	yage257.gif
	yage258.gif
	yage259.gif
	yage260.gif
	yage261.gif
	yage262.gif
	yage263.gif
	yage264.gif
	yage265.gif
	yage266.gif
	yage267.gif
	yage268.gif
	yage269.gif
	yage270.gif
	yage271.gif
	yage272.gif
	yage273.gif
	yage274.gif
	yage275.gif
	yage276.gif
	yage277.gif
	yage278.gif
	yage279.gif
	yage280.gif
	yage281.gif
	yage282.gif
	yage283.gif
	yage284.gif
	yage285.gif
	yage286.gif
	yage287.gif
	yage288.gif
	yage289.gif
	yage290.gif
	yage291.gif
	yage292.gif
	yage293.gif
	yage294.gif
	yage295.gif
	yage296.gif
	yage297.gif
	yage298.gif
	yage299.gif
	yage300.gif
	yage301.gif
	yage302.gif
	yage303.gif
	yage304.gif
	yage305.gif
	yage306.gif
	yage307.gif
	yage308.gif
	yage309.gif
	yage310.gif
	yage311.gif
	yage312.gif
	yage313.gif
	yage314.gif
	yage315.gif
	yage316.gif
	yage317.gif
	yage318.gif
	yage319.gif
	yage320.gif
	yage321.gif
	yage322.gif
	yage323.gif
	yage324.gif
	yage325.gif
	yage326.gif
	yage327.gif
	yage328.gif
	yage329.gif
	yage330.gif
	yage331.gif
	yage332.gif
	yage333.gif
	yage334.gif
	yage335.gif
	yage336.gif
	yage337.gif
	yage338.gif
	yage339.gif
	yage340.gif
	yage341.gif
	yage342.gif
	yage343.gif
	yage344.gif
	yage345.gif
	yage346.gif
	yage347.gif
	yage348.gif
	yage349.gif
	yage350.gif
	yage351.gif
	yage352.gif
	yage353.gif
	yage354.gif
	yage355.gif
	yage356.gif
	yage357.gif
	yage358.gif
	yage359.gif
	yage360.gif
	yage361.gif
	yage362.gif
	yage363.gif
	yage364.gif
	yage365.gif
	yage366.gif
	yage367.gif
	yage368.gif
	yage369.gif
	yage370.gif
	yage371.gif
	yage372.gif
	yage373.gif
	yage374.gif
	yage375.gif
	yage376.gif
	yage377.gif
	yage378.gif
	yage379.gif
	yage380.gif
	yage381.gif
	yage382.gif
	yage383.gif
	yage384.gif
	yage385.gif
	yage386.gif
	yage387.gif
	yage388.gif
	yage389.gif
	yage390.gif
	yage391.gif
	yage392.gif
	yage393.gif
	yage394.gif
	yage395.gif
	yage396.gif
	yage397.gif
	yage398.gif
	yage399.gif
	yage400.gif
	yage401.gif
	yage402.gif
	yage403.gif
	yage404.gif
	yage405.gif
	yage406.gif
	yage407.gif
	yage408.gif
	yage409.gif
	yage410.gif
	yage411.gif
	yage412.gif
	yage413.gif
	yage414.gif
	yage415.gif
	yage416.gif
	yage417.gif
	yage418.gif
	yage419.gif
	yage420.gif
	yage421.gif
	yage422.gif
	yage423.gif
	yage424.gif
	yage425.gif
	yage426.gif
	yage427.gif
	yage428.gif
	yage429.gif
	yage430.gif
	yage431.gif
	yage432.gif
	yage433.gif
	yage434.gif
	yage435.gif
	yage436.gif
	yage437.gif
	yage438.gif
	yage439.gif
	yage440.gif
	yage441.gif
	yage442.gif
	yage443.gif
	yage444.gif
	yage445.gif
	yage446.gif
	yage447.gif
	yage448.gif
	yage449.gif
	yage450.gif
	yage451.gif
	yage452.gif
	yage453.gif
	yage454.gif
	yage455.gif
	yage456.gif
	yage457.gif
	yage458.gif
	yage459.gif
	yage460.gif
	yage461.gif
	yage462.gif
	yage463.gif
	yage464.gif
	yage465.gif
	yage466.gif
	yage467.gif
	yage468.gif
	yage469.gif
	yage470.gif
	yage471.gif
	yage472.gif
	yage473.gif
	yage474.gif
	yage475.gif
	yage476.gif
	yage477.gif
	yage478.gif
	yage479.gif
	yage480.gif
	yage481.gif
	yage482.gif
	yage483.gif
	yage484.gif
	yage485.gif
	yage486.gif
	yage487.gif
	yage488.gif
	yage489.gif
	yage490.gif
	yage491.gif
	yage492.gif
	yage493.gif
	yage494.gif
	yage495.gif
	yage496.gif
	yage497.gif
	yage498.gif
	yage499.gif
	yage500.gif
	yage501.gif
	yage502.gif
	yage503.gif
	yage504.gif
	yage505.gif
	yage506.gif
	yage507.gif
	yage508.gif
	yage509.gif
	yage510.gif
	yage511.gif
	yage512.gif
	yage513.gif
	yage514.gif
	yage515.gif
	yage516.gif
	yage517.gif
	yage518.gif
	yage519.gif
	yage520.gif
	yage521.gif
	yage522.gif
	yage523.gif
	yage524.gif
	yage525.gif
	yage526.gif
	yage527.gif
	yage528.gif
	yage529.gif
	yage530.gif
	yage531.gif
	yage532.gif
	yage533.gif
	yage534.gif
	yage535.gif
	yage536.gif
	yage537.gif
	yage538.gif
	yage539.gif
	yage540.gif
	yage541.gif
	yage542.gif
	yage543.gif
	yage544.gif
	yage545.gif
	yage546.gif
	yage547.gif
	yage548.gif
	yage549.gif
	yage550.gif
	yage551.gif
	yage552.gif
	yage553.gif

