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Command Documentation Style

This section of the Reference Marnual offers advice and direction for those users wanting to
expand or taillor Humdrum so as to better suit a given application. Two types of extensions are
possible. First, the user may define one or more new representation schemes that better represent
the types of intormation of interest. For example, the user might define a new Humdrum
representation scheme suitable for representing North Indian tabla bols. Second, users might
wish to develop new software tools that manipulate one or more Humdrum representations in
some fashion. For example, the user might create a command that identifies the roots of chords.

The ensuing section is divided into two parts. The first part (Representation Development)
provides guidelines for defining new Humdrum representations. The second part (Software
Development) provides tips for writing adjunct software; a standard program skeleton 1is
described.
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1. Humdrum Representation Development

"h

1.1 Representation Assumptions

Three principle assumptions underly the Humdrum syntax. As with all design assumptions, these
principles inevitably act as limitations — circumscribing what is possible.

The first assumption i1s that the information can be adequately represented using discrete
rather than continuous signifiers. This is a limitation of all symbolic as opposed to analogic
representations. If continuous data (such as conducting gestures, or analog sound) are to be
represented using Humdrum, the data must be somehow transformed into a discrete form.

The second assumption is that information can be meaningfully organized as ordered
successions of data tokens. More concretely, it is assumed that data can be arranged in linear
spines, and that these spines are interpretable. This limitation implies that data tokens can be
meaningfully ordered. Normally, time (as in sequences of events), or space (as in successive
printed signs) provide suitable ordering devices. However, events that are conceived as entirely
independent of one another are difficult to represent in Humdrum.

The third assumption 1s that the ASCII character set provides sufficient richness to act as an
appropriate set of signifiers. In practice, this third assumption proves to be the most limiting. The
use of alphabetic and numeric characters is itself of little concern; as Saussure pointed out, the
choice of symbols is arbitary and conventional. Of greater concern is the limitation of size.
There are some 128 characters in the basic ASCII set — not all of them are printable.

The size restriction 1mposed by the ASCII character set might be circumvented by using
binary, pictoral or other signifiers. However, there are currently significant advantages to using
ASCII signifiers. The principal advantage is that many important software tools already exist for
the manipulation of ASCII text. The principal disadvantage of ASCII is addressed in Humdrum
by allowing users to recycle the ASCII characters an indefinite number of times — through the
use of new exclusive interpretations. Note that if all representation schemes use ASCII signifiers,
then any software tool developed for the manipulation of ASCII text can be applied immediately
to any Humdrum representation. This approach discourages the explosive proliferation of
specialized software (each dealing with a unique representation), and encourages users to rely on
a smaller toolkit consisting of more generalized and flexible tools. More precisely, this approach
reduces the demands tor software development while maximizing the range of tasks to which a
user’s skills may be applied.

An alternative to Humdrum’s provision for multiple representations would be to provide a
single representation, with greater contextual constraints on the positioning of signifiers.
Unfortunately, high levels of context dependency end up placing an inordinate burden on
- software development and use. Humdrum attempts to simplify software development by
minimizing as much as possible context-dependent meanings for signifiers.

1.2 Creating New Humdrum Representations

The Humdrum syntax provides a framework within which different music-related symbol-systems
can be defined. Each symbol system or representation scheme is denoted by a unique exclusive
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interpretation. There 1s no restriction on the number of schemes that can be used or created
within Humdrum. Humdrum users are consequently free to design new representation schemes
that address various needs.

Many newly created representation schemes are apt to be user-specific — ways of
organizing or representing information that are not likely to be of much value to other Humdrum
users. In other cases, a well crafted representation scheme will prove to be of benefit to a wider
community of users. Whether a new Humdrum representation scheme is intended for private use
or for public distribution, it 1s prudent to develope good design habits. There is no such thing as a
“perfect” representation, but it 1S possible to distinguish poor representations from better
representations.

There are a number of considerations involved in the lucid design of a Humdrum
interpretation. In general, the procedures involved in representation design can be summarized as
follows:

1. Identity as clearly as possible the goal or goals you hope to achieve using this new
representation. Formulate a list of questions you expect to be able to answer or address.

2. Create a list of the essential signifieds (concepts to be represented) that are needed to
pursue the goal(s).

3. Make a supplementary list of related signifieds that seem peripheral to the immediate
goal(s), but might prove important in pursuing related goals.

4. By examining the lists of essential and related signifieds, try to identify and define the class
or classes of information with which you are dealing.

5. Identify whether the signifieds of immediate interest belong together in a single
representation, or whether they ought to be split into two or more Humdrum interpretations.

6. Having established a clearer understanding of the class of signifieds, trim the previous lists
of signifieds to a single list.

7. Idenuty those signifieds that may take many variant forms (as, for example, musical
ornament symbols). Determine whether these vartant forms are finite, infinite or unknown
in number. If the number is infinite or unknown, a single signifier should be used — with
provision for an auxilliary representation that can be used to identify the specific variant
form.

8. Assign signifiers to all signifieds using the supply of available ASCII characters. In
general, assign only a single character for each signified. Using individual ASCII
characters as signifiers helps eliminates context dependency, and so reduces the complexity
of the software needed to process the representation.

9. In assigning signifiers to signifieds, try to avoid English language initialisms (such as Q for
quarter-note), since these mappings are poor mnemonics for non-English-speaking users.

Some of the “do’s” and “dont’s” of designing a Humdrum interpretation can be illustrated
by considering a hypothetical representation problem. Below, we consider how to design a
representation for keyboard fingering.
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1.3 Defining a New Humdrum Interpretation: A Sample Problem

Suppose that we are interested in providing a comprehensive representation scheme for fingering
keyboard instruments. More concretely, let’s suppose that we are interested in studying the
degree of performance difficulty for various keyboard works. Our goal might be to compare the
relative difficulty of works by different composers, or whether a given musical arrangement is
easier to pertorm than another arrangement. We might imagine, for example, writing a program
which, given some knowledge of performance constraints, could accept fingering information as
mput and produce as output an index of the degree of difficulty. At a later stage, we might
imagine creating an “intelligent” fingering program that could be used to determine an optimum
way of fingering a particular keyboard passage. (Such a program might even be designed to take
Into account the unique physiological abilitics, constraints, or preferences of a given performer.)
In summary, our first research goal would use our “fingering” representation as an input to some
analysis program, whereas our second research goal might produce the “fingering” representation
as output.

Having 1dentified the above goals, our next task 1s to identify the essential signifieds that
would be needed to solve these problems. The most basic information we want to represent
includes:

1. The identity of the finger and hand used in each key-press.
2. Thedentity of the key used in each key-press.

3. The order or sequence of key-presses.

4. The timing of each activity or movement.

Having identified what we see as the essential signifieds, we ought to pause and consider
related signifieds that, although they appear to be peripheral to our goals, might prove important
1In pursuing related goals. By thinking ahead about these other signifieds, we might avoid future
difficulties should we discover that another item of information proves crucial to our enterprise.

Some potential properties or attributes that we might consider representing could include
the following:

1. The torce or velocity with which the key is pressed.
Whether the hands are crossed — and if so, which arm is placed above the other.
What part of the finger/hand is used to press the key (e.g. knuckles).

Whether more than one finger is used to press the same key together.

A

Whether one (or more) finger is substituted for another finger in the course of holding a
depressed key.

6. Whether trills are notated as a precise sequence of finger presses, or whether they are
recorded as generic “trills.”

7.  Whether “Bebung” is used — that 1s, whether lateral or vertical pressure is applied once the
key 1s depressed.

8. Whether a second performer can be accommodated (as in the case of a piano duet).
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9. Physiological or anatomical attributes of the performer (such as hand-spans).

10. Pedalling. T
A list of related signifieds is rarely likely to be exhaustive or complete. So it is important to take
time to consider other possible types of information that relate to keyboard fingering.

In the imtal stages of designing a Humdrum representation, it is generally wise to try to
formulate a fairly exhaustive list of possible pertinent attributes. The purpose of such a list is to
ensure that an informed decision 1s made regarding those properties we wish to include in the
representation, and those properties we propose to exclude. More specifically, our goal is to
exclude information on the basis of an explicit decision rather than due to a tacit oversight.

Given the above list of potential signifieds, the next step is to pause and consider the nature
of the class of information we wish to deal with. For example, the idea of “pedalling” raises an
interesting representation question. Are we trying to represent keyboard fingering? Or is our task
the representation of keyboard performance? Pedalling is obviously part of keyboard
performance, but not something fingers do. Are we mistaken in thinking that our representation
task 1s limited to fingering? Also, since larger arm and body movements are essential aspects of
good performance, should we also consider representing these additional factors?

In light of our goal of measuring performance difficulty, we would have to admit that
pedalling can indeed contribute to the physical challenge arising from performing a given work.
In terms ot our research task therefore, it makes sense to include pedalling information. However,
we might balk at the prospect of mixing fingering and pedalling within a single representation —
especially since some keyboard instruments (€.g. clavichord) have no pedals. Moreover, the
pedals on a piano differ considerably from the pedals on an organ, although both contribute to
overall performance difficulty.

At this point, we are invited to consider whether the various signifieds in the above list
truly belong together in a single representation, or whether they ought to be split into two or more
Humdrum interpretations. The above discussion suggests that we might distinguish at least five
classes of mformation: performance (broadly construed), fingering, body movement, pedal-
boarding (as on the organ), and pedalling (as on the piano or harpsichord). Morecover, we might
define “performance information” as the combination of fingering plus pedalling or pedal-
boarding. In short, it would make sense to define three representations: fingering, pedalling, and
pedal-boarding, and to assume that our program measuring performance difficulty will accept any
combination of one or more of these three classes of information.

Our task has clearly expanded somewhat, since now we need to consider three types of
representation rather than one. For the purposes of this tutorial example, we might set aside the
problems of representing pedalling and pedal-boarding and focus on the fingering aspect of
keyboard performance.

Now that we have a clearer understanding of the class of signifieds, we can begin to trim
the lists of signifieds to a single short list. We have decided not to represent pedalling using the
same Humdrum interpretation as for fingering. We might also decide that the fingering activity
for a second pertormer can be represented using a second independent spine of information. We
might also dispense with representing the force or velocity of key-depression, and what part of
the finger/hand 1s used to press the key. We might have decided to represent the fingering for
trills, but not to encode cach key-stroke of the trill scparately. We could also decide that
representing physiological attributes of the performer (such as hand-spans) ought to be left as a
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separate representation. Finally, we might have also decided not to represent Bebung. This
leaves a trimmed list of eight types of signifieds»~

1. The identity of the finger and hand used in each key-press.
The 1dentity of the key used in each key-press.
The order or sequence of key-presses.

The duration of each activity or movement.

Whether more than one finger 1s used to press the same key together.

2
3
4
5. Whether the hands are crossed — and if so, which arm is placed above the other.
6
7. Whether finger substitution occurs.

3

The fingering for trills.

Before going on to map signifiers and signifieds we need to consider those signifieds that
may take variant forms. What sort of “variations” might appear in a fingering representation? An
obvious form of variation occurs when alternative fingerings are possible — that is, where a
passage contains (wo (or more) ways of assignming key-presses to different fingers. Our first task
here 1s to determine whether the number of variant forms is finite, infinite, or unknown in number.
We can consider this question both at the level of the individual key-press, and at the level of the
entire work. In the case of the individual key-press, the maximum number of variants is ten —
since there are no more than ten fingers. If more than one finger is used to press a key, or if
finger-substitutions occur, then the maximum number of variants is somewhat more than ten —
although still finite in number. At the level of the entire work, the maximum number of variants
is potentially very large (at least 10 X the total number of key-presses in the work). Nevertheless,
this number remains a finite value for works of finite length. The question arises, do we want our
fingering representation to represent a single performance of a keyboard passage, or is the
representation 1ntended to represent alternative forms of performance?

In order to answer this question we must return once again to our initial goals. In analysing
the degree of performance difficulty for a work, we might prefer to analyse a single (actual or
plausible) performance. Measuring the degree of performance difficulty for a class of variant
performances 1s apt to prove difficult. On the other hand, the musical score for a keyboard work
may contain no fingering indications whatsoever. Therefore it would be wrong to assume that a
single fingering specificaiion would give an accurate indication of the performance difficulty for a
given musical work. This raises the question of whether our intention is to measure the
performance ditficulty of a specific sequence of key-presses used in a performance, or whether
our 1ntention 1s to measure the performance difficulty of a particular musical work.

As noted above, measuring the difficulty for a class of variant performances is likely to
prove difficult. There are many many ways of fingering a keyboard work. Averaging the
performance difficulty for the complete class of possible fingering arrangements would appear
silly since most of these fingerings would be awkward. One could argue, for example, that the
degree of performance difficulty for a work can be best established by analysing the single most
convenient way of fingering the work. Alternatively, one could argue that the degree of
performance ditficulty for a work can be determined by examining a handful of the most
convenient ways of fingering the work. Out of the large number of possible fingerings, it is only
the plausible fingerings that really count.
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Whether our intention i1s to measure a single fingering sequence or a class of such
fingerings, a helpful question to consider here is-where do we expect to get our fingering data?
Three sources come to mind: (1) recorded fingering data from an actual performance, (2)
fingerings (including alternatives) notated in printed scores or annotated by keyboard performers,
and (3) fingering data (including alternatives) generated by a computer program. In the case of an
actual performance, there will be only one fingering. The other sources can potentially produce
more than one fingering at a time.

Having 1dentified those attributes that we wish to represent, we need to consider how the
representation ought to be structured. Specifically, we need to consider how our fingering
representation can be coordinated with other Humdrum interpretations. The most important
coordination task 1s ensuring that our representation will correspond well with the core **kern
representation. Each data record in **kern represents a single sonority — a moment in time
that differs from the previous state. Since key-presses are closely related to notes, we might want
to coordmate each of the **kern note tokens with possible key-presses. Many Humdrum
pitch-related representations include barlines — which are useful markers for coordinating such
representations. This suggests that it might be useful to include barlines in our fingering
representation. Given both the barline and note-token/key-press correspondences, we should
have little difficulty ensuring that our fingering representation will be fully coordinated with a
number of other Humdrum representations.

We are now ready to consider how to map our signifieds with a set of appropriate signifiers.
In general, we should endeavor to define one signifier for each attribute. First, consider how we
might identify the individual fingers. A good system would be to identify each finger by a unique
signifier — such as a unique decimal integer. However, there is a long-standing tradition of
1dentitying the thumb of each hand as the number "1", the index finger by the number "2" and so
on. Given the limited number of fingers, some context-dependency may be appropriate here. In
short, we may decide to identify specific fingers through a ligature of “hand+finger” — e.g. left-3
or right-5. The signifiers “left” and “right” obviously introduce an English bias. It would be
better to consider more universally recognized terms such as “mano destra” (MD) and “mano
sinistra” (MS). However, not every user will find these is terms familiar or comfortable.

We need not rely on a literalism or initialism. “Left” and “right” are concepts that lend
themselves well to pictorial representation, so we might consider using those ASCII characters
that convey a left-right pictorial dimension. Possible contenders would include various letter-
contrasts: d versus b, J versus L; the three types of parentheses: ( versus ), { versus },
and [ versus ]; and the greater-than and less-than signs: < versus >. The letter contrasts J
versus L are especially poor since although the angle of the letter L is drawn to the right, “L”
implies an 1nitialism for “left” — and so is apt to cause confusion. The parentheses cannot be
misconstrued as literalisms or initialisms, so they are somewhat better signifiers. However the
greater-than and less-than signs are the mostly clearly arrow-like, and so perhaps provide a better
pair of left-right signifiers.

Having decided upon the signifiers for left and right, and having adopted the tradition of
numbering the fingers (1=thumb, 2=index, 3=middle, 4=ring, S5=little}), we could continue
mapping signifiers to signifieds, taking care to minimize context dependency.

In reflecting on the above discussion, readers are apt to feel that one or another type of
information ought to have been included, or that the signifiers ought to be assigned in a different
manner. Since Humdrum provides a framework within which alternative representation schemes
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can be designed, there i1s no need to defend a given representation from competing schemes.
Whether an interpretation survives and proliferates will be determined, not by its conceptual
elegance or completeness, but by whether 1t 1s found to have a practical utility in solving users’

problems.
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2. Humdrum Software Development

The Humdrum toolkit is necessarily limited in sE-ope and there are many functions that users will
wish to add. In developing adjunct software tools, 1t 1s imperative that the software conform to
the tollowing design conventions:

1.
2.

10.

11.

12.

13.

14.

15.

Programs should be general-purpose and adapt to a wide variety of input circumstances.

If possible, programs should be able to process any Humdrum input rather than be limited
to a given type of input interpretation.

Command names should be limited to 8 characters in length 1n order to ensure portability to
DOS systems.

Command names should preferably be the same as the output interpretation produced by
the command.

Command names should not be unduly abbreviated since infrequently used software 1s less
easily remembered than frequently used system commands.

The command syntax should conform to standard POSIX conventions.

Errors and warnings should be prefaced by giving the name of the program or command
which 1ssues the error message. ¢.g.

vox: ERROR: voice 3 begins with a null token.

Errors messages should be sent to “stderr” rather than to the standard output.

Wherever possible, “filter’ programs should produce outputs that are identical in structure
to the mput. More specifically, input line numbers should correspond to output line
numbers — where appropriate.

Comments, mterpretations, barlines, and double barlines should be echoed in the output as
the default condition (except in the case of formatted non-Humdrum outputs).

For many programs, the user should be able to skip the processing of certain types of tokens
(such as barlines) by specifying a -s flag — followed by a user-defined regular expression.
Tokens matching the regular expression should be echoed unprocessed in the output stream.

Programs should handle spine-path changes in a fashion appropriate to the nature of the
command.

Comments and interpretations should be identified by explicitly matching the exclamation
mark or asterisk in the first column of the input data token. Exclamation marks and
asterisks are legitimate data signifiers when not occurring in the first column of an input
token.

Where possible, outputs should not be formatted with descriptive labels etc. The preferred
output format 1s to have all outputs conform to the Humdrum syntax. This ensures that all
outputs can themselves be used as inputs to other Humdrum programs.

Programs should generally avoid assumptions concerning context-dependent inputs. Inputs
should be assumed to be context-free.
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16. Programs should be able to handle inputs with unexpected user extensions or
representational addenda — such as the presence of spurious or unknown characters.

17. Programs that search or examine inputs for certain features, properties, or errors should
return a nudl output if nothing i1s found. Messages indicating that ‘nothing was found’
should be avoided. “Silence 1s golden.”
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2.1 Standard Program Skeleton

Much of the Humdrum software was originally developed using the AWK programming
language. AWK was designed by Alfred Aho, Brian Kemighan, and Peter Weinberger.t It is
syntactically very similar to the C programming language, but is easier to use and promotes better
sottware productivity. AWK provides powerful text manipulation features that make it admirably
suited to the creation of Humdrum software. AWK 1s also a very easy language to learn, and is an
excellent first language for novice programmers.

The Humdrum Toolkit includes programing skeletons that may provide a useful starting
place for software development using AWK. Two skeleton files are provided with the toolkit:
skeleton.ksh and skeleton.awk. The kornshell file (. ksh) parses the command line, issues
appropriate error messages if the command is improperly invoked, displays a help screen if
necessary, and assembles the command parameters to invoke an awk script for the command
(.awk).

The skeleton.awk skeleton contains a main loop that is normally executed for each
record of mput. A scries of useful functions are included in the AWK skeleton program. These
tunctions include:

Parse command. This function checks that the input passed from the corresponding komshell
script for the command. The Parse_command function contains a list of valid options and
assigns the passed parameters to the appropriate option variables.

Store_indicators. This function allows the spine-path indicators for the current record to be
stored 1n the array path indicator so that they may be used later.

Store _new _interps. This function stores the new interpretations found in an interpretation record
for each spine.

Process indicators. This function takes the spine-path indicators that were stored in the array
‘path_indicator’ 1n the function ’store_indicators’ and manipulates the arrays
‘path_indicator’ and ’current_interp’ according to the contents of the array
‘path_indicator’.

Ins array pos. This function inserts new positions 1n the arrays ’path_indicator’,
‘current_interp’, and ‘current_key’ and copies elements so that everything is preserved

Del array pos. Performs the opposite of function ’ins_array_pos’.

Exchange spines. This tunction exhanges two spines by exchanging the corresponding elements
in current_interp.

T Aho, A., Kemighan, B. & Weinberger, P. The AWK Programming Langauge. Reading, Massachusetts: Addison-
Wesley Publishing Co. 1988.
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