Section S

Regular Expression Reference

Regular Expression Documentation

This section of the Reference Manual describes 1n detail the operation of regular expressions.
Regular expressions were developed on UNIX operating systems as a generic way of defining
patterns of characters. The following documentation consists of two parts: (1) a tutorial
introduction to regular expressions, and (2) a comprehensive summary of the syntax.

Page 491

regexp (6) V Regular Expression Reference V

Regular Expressions: A Tutorial Introduction
A common task in computing environments is searching through some set of data for occurrences
of a given pattern. When a pattern is found, various courses of action may be taken. The pattern
may be copied, counted, deleted, replaced, isolated, modified, or expanded. A successful
pattern-match might even be used to initiate further pattern searches.

Regular expression syntax provides a standardized method for defining patterns of
characters. Regular expressions are restricted to common ASCII characters — including the
upper- and lower-case letters of the alphabet, the digits zero to nine, and other special characters
typically found on typewriter-like keyboards.t Since all Humdrum representations are based on
strings of ASCII characters, regular expressions can be used to identify patterns of musical
signifiers. Regular expressions can be used with any type of Humdrum representation; it does not
matter what type of information is represented by the signifiers.

A number of general-purpose commands rely on regular expression syntax for specifying
patterns. These include the UNIX awk, ed, egrep, ex, expr, grep, sres, pg, sed and vi commands.
In addition, more than a dozen Humdrum tools rely on regular expression syntax for specifying
patterns of ASCII characters. Included in these tools are the Humdrum correl, fill, mint, num,
patt, pattern, recode, rend, xdelta and yank commands.

For musicologist-users interested in searching for complex music-related patterns, it is
valuable to develop some facility in using regular expressions. Regular expressions will not
allow users to define every possible musical pattern of potential interest. In particular, regular
expressions cannot be used to identify deep-structure patterns from surface-level representations.
However, regular expressions are quite powerful — typically more powerful than they appear to
the novice user. Not all users will be equally adept at formulating an appropriate regular

expression to search for a given patiern. As with the study of a musical instrument, practise is
advised.

Literals

The simplest regular expressions are merely literal sequences of characters forming a character
string, as in the pattern:

foo

This pattern will match any data string containing the sequence of letters f-0-0. The letters must
be contiguous, so no character (including spaces) can be interposed between any of the letters.
The above pattern is present in strings such as “fool” and “mgfooXy” but not in strings such as
“Foo” or “follow”. The above pattern is called a literal since the matching pattern must be

literally 1dentical to the regular expression (including the correct use of upper- or lower-case).

T The initialism ‘ASCII’ stands for the American Standard Code for Information Interchange.

Page 492

V Regular Expression Reference V regexp (6)

When a pattern 1s found, a starting point and an ending point are identified in the input
string, corresponding to the defined regular expression. The specific sequence of characters found
in the input string 1s referred to as the matched string or matched pattern.

Wild-Card

Patterns that are not literal include so-called metacharacters. Metacharacters are used to specify
various operations, and so are not interpreted as their literal selves. The simplest regular
expression metacharacter 1s the period (.). The period matches any single character — including
spaces, tabs, and other ASCII characters. For example, the pattern:

£f.o

will match any 1nput string containing three characters, the first of which is the lower-case ‘£’ and
the third of which 1s the lower-case ‘c’. Hence, the above pattern is present in strings such as
“flow’ and “proof of” but not in “follow” or “found”. Any character can be interposed
between the “£° and the ‘o’ provided there is precisely just one such character.

Escape Character

A problem with metacharacters such as the period is that sometimes the user wants to use them as
literals. The special meaning of metacharacters can be “turned-off” by preceding the
metacharacter with the backslash character (\). The backslash is said to be an escape character
since 1t 18 used to release the metacharacter from its normal function. For example, the regular
CXPression:

\.

will match the period character. The backslash itself may be escaped by preceding it by an
additional backslash (1.e. \).

Repetition Operators

Another metacharacter is the plus sign (+). The plus sign means “one or more consecutive
mstances of the previous expression.” For example,

fo+

specifies any character string beginning with a lower-case ‘£’ followed by one or more
consecutive mstances of the small letter ‘o’. This pattern is present in such strings as “food” and
“folly,” but not in “front” or “flood.” Notice that the length of the matched string is
changeable. In the case of “food” the matched string consists of three characters, whereas in
“folly” the matched string consists of just two characters. Notice also that the plus sign
modifies only the preceding letier ‘o” — that is, the single letter ‘o’ is deemed to be the previous
expression which 1s atfected by the +. However, the affected expression need not consist of just

Page 493

regexp (6) V Regular Expression Reference V

a single character. In regular expressions, parentheses () are metacharacters that can be used to
bind several characters into a single unit or sub-expression. Consider, by way of example, the
following regular expression:

(fo) +

The parentheses now bind the letters ‘£” and ‘o’ into a single expression, and it is this expression
that 1s now modified by the plus sign. The above regular expression may be read as “one or more
consecutive Instances of the string ‘fo’.” This pattern is present in strings like “food” (one
instance) and “fofoe” (two 1nstances).

Several sub-expressions may occur within a single regular expression. For example, the
following regular expression means “one or more instances of the letter ‘a’, followed by one or

FA

more 1nstances of the string ‘bl’.

(a) +(bl)

This would match character strings in inputs such as “able” and “kraable,” but not in
“dabble” (two consecutive b’s) or “blbl” (no leading ‘a’). Note that the parentheses are not
required around the letter ‘a’ in the above regular expression. The following expression mixes
the + repetition operator with the wild-card (.):

Ct.mt+

This pattern 1s present in strings such as “accompany,” “accommodate,” and “cymbal.” This
pattern will also match strings such as “ccm’” since the second ‘c’ can be understood to match the
period character.

A second repetion operator is the asterisk (*). The asterisk means “zero or more
consecutive instances of the previous expression.” For example,

fo*xr

specifies any character string beginning with a lower-case ‘£’ followed by zero or more instances
of the letter ‘o’ followed by the letter ‘r’. This pattern is present in such strings as “ford,”
“foooorm” as well as “fred,” and “front.” As in the case of the plus sign, the asterisk
modifics only the preceding expression — in this case the letter ‘o’. Multi-character expressions
may be modified by the asterisk repetition operator by placing the expression in parentheses.
Thus, the regular expression:

ba (na) *

L6

will match strings such as “ba,” “bana,” “banana,” “bananana,” elc.

Incidentally, notice that the asterisk metacharacter can be used to replace the plus sign (+)
metacharacter. For example, the regular expression X+ is the same as XX*. Similarly, (abc)+
1s equivalent to (abc) (abc) *. The plus sign (+) metacharacter is not strictly necessary, but it is
frequently more convenient.

Page 494

V Regular Expression Reference V regexp (6)

A frequent construct used in regular expressions joins the wild-card (.) with the asterisk
repetition character (*). The regular expression:, -

K

means “zero or more instances of any characters.” (Notice the plural “characters;” this means the
repetition need not be of one specific character.) This expression will maich any string, including
nothing at all (the nul/l string). By itself, this expression is not very useful. However it proves
invaluable in combination with other expressions. For example, the expression:

{.7%]}

will match any string beginning with a left curly brace and ending with a right curly brace. If we
replaced the curly braces by the space character, then the resulting regular expression would
match any string of characters scparated by spaces — such as printed words.

A third repetition operator is the question mark (?) — which means “zero or one instance
of the preceding expression.” This metacharacter is frequently useful when you want to specify
the presence or absence of a single expression. For example,

fl?o

will match “£flow” and “fodder” but not “£f1y” or “f110.”

Once again, parentheses can be used to specify more complex expressions. The pattern:
fl72 (o) +

is present in such strings as “flow,” “food,” and “£lood,” but not in “£11lox” or “frown.”

In summary, we’ve identified three metacharacters pertaining to the number of occurrences
of some character or string. The plus sign means “one or more,” the asterisk means ““zero or
more,” and the question mark means “zero or one.”t Collectively, these metacharacters are know
as repetition operators since they indicate the number of times an expression can occur in order
to match.

Min-Max Character Repetition

In addition to these general repetition operators, there is a syntax to specify the precise number of
occurrences for a single character, or a numerical range of possible repetitions. Three syntactical
forms are provided. All three forms usc the special delimiters \{ and \}. The first form specifies
the exact number of repetitions:

+ Sometimes it is difficult to remember which metacharacter has which effect. The follow mnemonic may help:
question mark connotes “it’s either there or it’s not;” the plus sign connotes “maybe there’s an addition one;” and the
asterisk connotes “match the universe — including nothing.”

Page 495

regexp (6) V Regular Expression Reference V

x\{10\}
This regular expression will match precisely 10 consecutive occurrences of the lower-case letter
‘x’. The second form specifies the minimum number of repetitions:

x\ {10, \}

(Note the presence of the comma.) This regular expression will match an entire string of “x’s that
consists of at least 10 consecutive occurrences of ‘x’. The third form specifies a minimum and
maximum number of repetitions:

x\{10,20\}

This regular expression will match a string of *x’s that consists of at least 10 occurrences, but not
more than 20 occurrences of “x’,

Priority of the L.ongest String Match

When matching regular expressions to some input, the operation procedes from left to right, and
longer matching sirings take priority over shorter matching strings. Consider, for example, an
mnput record (line) consisting of 29 consecutive ‘x’s. Given the regular expression used above,

x\{10,20\}

the mput would be parsed as follows. The first 10 ‘x’s would satisfy the minimum length
criterion and so, by themselves, would constitute a “matching string.” In encountering the
cleventh letter “x’, this longer string would be recognized as also satisfying the regular
expression. Hence, the end-point of the matching string would be moved to the eleventh ‘x’ and
the previous lO-character maiching-string would be superceded. A similar process will continue
until the twentieth consecutive letter ‘x’ 1s encountered. With the 21st ‘x’, the maximum length
criterion prevents this ‘x’ from joining the preceding 20 as a matching string. Having matched
this maximum length string, the regular expression parser will continue from the 21st letter ‘x’ to
see 1f another matching string can be found. Since there are only nine remaining ‘x’s, no further
matching strings exist in this input. Although it is possible to conceive of 29 ‘x’s as two
matching strings consisting of (say) 19 and 10 consecutive ‘x’s respectively, in this case the
regular expression parser will identify only a single matching string. Once again, the longest
matching string takes precedence over shorter potential matching strings.

Context Anchors

Often 1t 18 helpful to limit the number of occurrences matched by a given pattern. You may want
to match patterns in a more restricted context, One way of restricting regular expression pattern-
matches 18 by using so-called anchors. There are two regular expression anchors. The caret (*)
anchors the expression to the beginming of the string. The dollar sign ($) anchors the expression
to the end of the string. For example,

Page 496

V' Regular Expression Reference V regexp (6)

"A

ﬂ""_r

matches the upper-case letter ‘A’ only if 1t occurs at the beginning of a string. Conversely,

A3

will match the upper-case letter ‘A’ only if it is the last character in a string. Both anchors may be
used together, hence the tollowing regular expression matches only those strings containing just

the letter ‘A’:

~AS

Of course anchors can be used in conjunction with the other regular expressions we have
seen. For example, the regular expression:

“a.*zS

matches any string that begins with ‘a’ and ends with ‘z’.

OR Logical Operator

One of several possibilitiecs may be matched by making use of the logical OR operator —
represented by the vertical bar (|) metacharacter. For example, the following regular expression

matches either the letter “x’ or the letter ‘v’ or the letter ‘z’:

X|lylz

Expressions may consist of multiple characters, as in the following expression which matches the
string ‘sharp’ or ‘flat’ or ‘natural’.

sharp|flat{natural

More complicated expressions may be created by using parentheses. For example, the regular
CXPression:

(simple|compound) {duplel|triple|quadruple|irregular) meter

will match eight different strings, including simple triple meter and compound
quadruple meter.

Character Classes

In the case of single characters, a convenient way of identifying or listing a set of possibilities is
to use the regular expression character class. For example, rather than writing the expression:

Page 497

regexp (6) V Regular Expression Reference V

alblcldlelf]|g
the expression may be simplified to:
labcdetfqg]

Any character within the square brackets (a “character class™) will match. Spaces, tabs, and other
characters can be included within the class. When metacharacters like the period (.), the asterisk
(*), the plus sign (+), and the dollar sign ($) appear in character classes, they lose their special
meaning, and become simple literals. Thus the regular expression:

[xyz . +*3]

matches any of the characters ‘x,” ‘y,” “z,” the period, plus sign, asterisk, or the dollar sign.

Some other characters take on special meanings within character classes. One of these is
the dash (-). The dash sign acts as a range operator. For example,

[A-Z]
represents the class of all upper-case letters from A to Z. Similarly,
[0-9]

represents the class of digits from zero to nine. The expression given earlier — [abcdefg] —
can be simplified further to: [a-g]. Several ranges can be mixed within a single character class:

[a—gA-G0-94#]

This regular expression matches any of the lower- and upper-case characters from A to G, or any
digit, or the octothorpe (3#). If the dash character appears at the beginning or end of the character
class, 1t loses its special meaning and become a literal dash, as:

[a—gA—-G0-9%#-]

This regular expression adds the dash character to the list of possible matching characters.

Another usetul metacharacter within character classes is the caret (7). When the caret
appears at the beginning of a character-class list, it signifies a complementary character class.
That 1s, only those characters not in the list are matched. For example,

["0-9]

matches any character other than a digit. If the caret appears in any position other than at the
begmmng of the character class, it loses its special meaning and is treated as a literal. Note that if
a character-class range is not specified 1in numerically ascending order or alphabetic order, the
regular expression is considered ungrammatical and will result in an error.

Page 498

V' Regular Expression Reference V regexp (6)

Character Class Keywords

Some character class expressions occur frequently in pattern definitions. The ten most common
character class expressions can be invoked via character-class keywords. These are listed below:

[:upper:]] match any upper-case alphabetic character (same as [A-Z])

[:lower:]] match any lower-case alphabetic character (same as [a-z])

[[:alpha:]] match any upper- or lower-case alphabetic character (same as [a-zA-z])
[[:digit:]] match any single numerical digit (same as [0-9])

[[:alnum:]] match any alphanumeric character (same as [0-9a-zA-Z])

[[:space:]] match any empty space (blank, tab)

[:graph:}] match any grapheme (any character except empty space)

[:print:]] match any printable character (empty space included)

[:punct:]] match any non-alphanumeric character

[:cntrl:]] match any non-printable character, including control characters

- bl i

Character-class keywords for regular expressions

Muluple character-class keywords can appear together, hence
[[:lower:] [:digit:]]

with match any lower-case alphabetic character, or any digit.

Examples of Regular Expressions

The following table lists some examples of regular expressions and provides a summary
description of the effect of each expression:

Page 499

regexp (6) V Regular Expression Reference V

A match letter A’ ~
"A match letter ‘A’ at the beginning of a string
AS maich letter ‘A’ at the end of a string
match any character (including space or tab)
A+ match one or more nstances of letter “A’
A? match a single instance of ‘A’ or the null string
A¥* maltch one or more instances of ‘A’ or the null string
o match any string, including the null string
A.*B match any string starting with A’ up to and including "B’
AlB match ‘A’ or ‘B’
(A)| (B) match ‘A’ or ‘B’
[AB] maich ‘A’ or ‘B’
["AB] match any character other than ‘A’ or ‘B’
AB match ‘A’ followed by ‘B’
AB+ match “A’ tollowed by one or more ‘B’s
(AB)+ match one or more instances of ‘AB’, e.g. ABAB
(AB)| (BA) match ‘AB’ or ‘BA’
A\{5\} match five instances of ‘A’
A\{5\]} match five or more instances of ‘A’
A\{5,0\} match between five and nine instances of ‘A’
[TAJAA[CA] match two ‘A’s preceded and followed by characters other than ‘A’s
7] match any character at the beginning of a record except the caret

Examples of regular expressions.

Examples of Regular Expressions in Humdrum

The following table provides some examples of regular expressions pertinent to Humdrum-format
inputs:

By match any global comment

“11.*Beethoven match any global comment containing ‘Beethoven’

"1 *[Rr]ecapitulation match any global comment containing the word
‘Recapitulation’ or ‘recapitulation’

S match only local comments
T\ K\ E match any exclusive interpretation
O\ R[] match only tandem interpretations
*-4+vx"]$ match spine-path indicators
1 match only data records
“*L*S match entire data records
“\<tab>)*\.$ match records containing only null tokens (zab means a tab) |
“N*f#: match key interpretation indicating F# minor]

Regular expressions suitable for all Humdrum inputs.

By way of illustration, the next table shows examples of regular expressions appropriate for
processing **kern representations.

Page 500

V Regular Expression Reference V regexp (6)

"= match any **kern barline or double barline

"=]"=] match **kern single barlines but not double barlines

=] maich any token other than a barline or double barline

; maich any **kern note or barline containing a pause

T | match any **kern note containing a whole-tone trill

[Tt] match any **kern note contamning a whole-tone or
half-tone trill

- match any **kern note containing at least one flat

[#] match any **kern note containing a sharp, double-
sharp, etc.

[#n-] ' match any **kern note containing an accidental,
including a natural

[A-Ga-g]+ match any diatonic pitch letter-name

[0-9]+\ . maich **kern dotted durations

[0-91+\ \.[".] match only doubly-dotted durations

[Ggl+["#-] match any **kern pitch "G’ that does not have a sharp

| or flat

ClrghgeS | "g#-1) match only the pitch ‘gg’ (G5)

{¥rlr¥| match all phrase beginnings that start with a rest

| "4[7°0-9.] | [70-9]4(["0-9.] | $) match **kern quarter durations
| (8] 16)["0-9.]! ["0-91(81 16)["0-9.] match eighth and sixteenth durations only
(([EeJ+-) | ([Ggl+-) | ((Bb]+-)XS$|[*-]) match any note from E-flat minor chord

Regular expressions suitable for **kern data records.

Note that the above regular expressions assume that comments and interpretations are not
processed in the input. The processing of just data records can be assured by embedding each of
the regular expressions given above in the expression

(" ["*!].*regexp) | ("regexp)

For example, the following regular expression can be used to match **kern trills without
possibly mistaking comments or interpretations:

(CL7*]R[Te) | (T [TE])

For Humdrum commands such as humsed, rend, xdelta, yank, and ydelta, regular expressions
are applied only to data records so there 18 no need to use the more complex expressions. In some
circumstances, the rid command might be used to explicitly remove comments and
interpretations prior to processing.

Basic, Extended, and Humdrum-Extended Regular Expressions

Over the years, new features have been added to regular expression syntax. Some of the early
software tools that make use of regular expressions do not support the extended features provided
by more recently developed tools. So-called “basic” regular expressions include the following
features: the single-character wild-card (.), the repetition operators (*) and (?) — but not (+), the

Page 501

regexp (6) V Regular Expression Reference V

context anchors (°) and ($), character classes ([...]), and complementary character classes
(["...1). Parenthesis-grouping is supported it Basic regular expressions, but the parentheses
must be used in conjunction with the backslash to enable this function (i.e. \ (\)).

So-called “extended” regular expressions include the following (added features are highlighted in
bold): the single-character wild-card (.), the repetition operators (*), (?) and (+), min-max
character repetition (\{ \}), the context anchors () and ($), character classes ([...]),
complementary character classes ([~ .. .]), character-class keywords ([:...: 1), the logical OR
(1), and parenthesis-grouping.

Record-Repetition Operators

The Humdrum pattern command permits an additional regular expression feature that is
especially useful in musical applications. Specifically, pattern permits the defining of patterns
spanning more than one line or record. Record-repetition operators are specified by following the
regular expression with a tab — followed by either +, *, or ?. For example, consider the
following Humdrum-extension regular expression:

X +
v *
Z ?

When the metacharacters +, *, or ? appear at the end of a record, preceded by a tab character,
they pertain to the number of records, rather than the number of repetitions of the expression
within a record. The first record of the regular expression (X<tab>+) will match one or more
successive lines each containing the letter ‘X’. The second record of the regular expression
(Y<tab>*) will match zero or more subsequent lines containing the letter ‘Y’. The third record of
the regular expression (Z<tab>7?) will match zero or one line containing the letter ‘Z’. Hence, the
above multi-record regular expression would match an input such as the following: three
successive lines containing the letter ‘X, followed by eight successive lines containing the letter
"Y', tollowed by a single line containing the letter ‘z’. Similarly, the above regular expression
would match an input containing one line containing the letter “X’.

Record-repetition operators can be used in conjunction with all of the other regular
expression features. For example, the following regular expression matches one or more
successive **kern data records containing the pitch ‘G’ (naturals only) followed optionally by a
single ‘G#’ followed by one or more records containing one or more pitches from an A major
triad — the last of which must end a phrase:

(Ggl+["#- +
Ggl+#["# ?
([Ral+]| ([Ccl+#) | [Ee]+) ["#-] *

(}.*([Ral+] ([Ccl+#) | [Ee]+) ["#-1)) | (([Aal+]| ([Ccl+#) | [Ee]l+) ["#-1.*%})

Page 502

V Regular Expression Reference V regexp (6)

NAME
regexp — regular expression pattern-match syntax
DESCRIPTION

“Regular expression syntax” provides a standardized way of defining pattern of characters.
Regular expressions are limited to common ASCII characters — such as the letters of the
alphabet, numbers, and other special characters typically found on typewriter-like
keyboards.

Three vanants of regular expression syntax can be distinguished: (1) basic regular
expressions, (2) extended regular expressions, and (3) Humdrum-cxtended regular
expressions. The differences are outlined later in this documentation.

SYNTAX

A regular expression is any combination of sub-expressions consisting of literals, wild cards,
repetiion operators, min-max character repetition, context anchors, character classes,
complementary character classes, the logical OR, and parenthesis-grouping.

Literals. A literal i1s any string not containing unescaped metacharacters. Metacharacter
may be treated as literal characters by preceding the metacharacter by the escape character
— the backslash (\). (The backslash itself may be escaped by preceding it by an additional
backslash.) Literals are matched only if a string of characters is found that is identical to the
literal.

Wild Card (.) The period character (.) 1s a wild-card that matches any single character.

Repetition Operators (+) (?) (*). An expression followed by the plus sign (+) matches any
string of one or more occurrences of expression. An expression followed by the question
mark (?) matches zero or one occurrence of expression. An expression followed by the
asterisk (*) matches zero or more occurrences of expression.

Min-Max Character Repetition (\{ \}). Precise numbers of occurrences for a single
character, or minimum and maximum numbers of occurrences can be specified using the
special delimiters \{ and \}. Three syntactical forms exist; the regular expression x\ {10\ }
will match precisely 10 occurrences of the lower-case letter ‘x’. The regular expression
x\ {10, \'} will match an entire string of ‘x’s that consists of at least 10 occurrences of ‘x’.
The regular expression x\{10,20\} will match a string of ‘x’s that consists of at least 10
occurrences, but not more than 20 occurrences of ‘x’.

Context Anchors () ($). An expression preceded by the caret anchor (°) matches only

those occurrences of expression starting at the beginning of a string. An expression followed
by the dollar sign anchor ($) matches only those occurrences of expression ending at the end

Page 503

regexp (6) V Regular Expression Reference V

of a line.

Character Classes ([...]). Any character given in a string bounded by left ‘[’ and right ‘]’
braces will be matched. Character ranges can be indicated via the dash sign (-), hence the
character class [A-Z] matches any upper-case letter, and [5-8] matches any of the digits 3, 6,
7,or 8. If the dash sign is placed at the beginning or the end of the character class, it loses its
special meaning; hence [+-] matches the plus or minus sign. The metacharacters *, +, 2,
S, (,and) lose their special meanings within character classes.

Complementary Character Classes ([...]). If the first character in a character class is the
caret ("), the character class 1s negated. Only those characters not in the character class will
produce a match.

Logical OR (|). Two or more expressions separated by | will cause matches for any of the
component expressions. Hence the regular expression abc|lmn|xyz will match either
‘abC,, ‘lmn:..: 01' ﬁxyz.?

Parenthesis Grouping (). Expressions may be logically grouped using parentheses.
Hence, the expression (abc)+ means one or more occurrences of the string ‘abc’.
Muluple levels of grouping are possible such as ((abc |DEF) + (xyz)) + — which matches
strings such as “abcabexyz” and “abexyzDEFDEFabexyz.”

Page 504

V' Regular Expression Reference V regexp (6)

EXAMPLES
A match letter "A°
"A match letter “A’ at the beginning of a string
A% match letter ‘A’ at the end of a string
match any character (including space or tab)

A+ match one or more instances of letter “A’

| A? match a single instance of *A’ or the null string

I A match one or more instances of A’ or the null string
o match any string, including the null string
A.*B match any string starting with ‘A’ up to and including ‘B’
AlB match ‘A’ or ‘B’
(A)| (B) match ‘A’ or ‘B’
AB] match ‘A’ or ‘B’
“AB] match any character other than ‘A’ or ‘B’
AB match ‘A’ followed by ‘B’
AB+ match “A’ followed by one or more ‘B’S
(AB)+ match one or more instances of ‘AB’, ¢.g. ABAB
(AB)I (BA) match “AB’ or ‘BA’
A\{5\} match five instances of ‘A’
A\{5\] match five or more instances of ‘A’
A\{5,9\] match between five and nine 1nstances of ‘A’
[TA]JAA[A] match two “A’s preceded and followed by characters other than ‘A’s
] match any character at the beginning of a record except the caret
A + match one or more lines containing the letter ‘A’
A 7 match zero or one line containing the letter ‘A’

I_AA+ * match zero or more lines containing at least two consecutive ‘A’s

Examples of regular expressions.
VARIANTS

Three variants of regular expression syntax exist: (1) basic, (2) extend, and (3) Humdrum-
extended. “Basic” regular expressions include the following features: the single-character
wild-card (.), the repetition operator (*) but not (?) or (+), the context anchors (°) and (3),
character classes ([...]), and complementary character classes ([~...]). Parenthesis-
grouping is supported in Basic regular expressions, but the parentheses must be used in
conjunction with the backslash to enable this function (i.e. \ (\)).

“Extended” regular expressions include the following (added features are highlighted in
bold): the single-character wild-card (.), the repetition operators (*), (?) and (+), min-max
character repetition (\{ \}), the context anchors (*) and ($), character classes ([...1),

logical OR (]), and parenthesis-grouping.

The Humdrum-extended syntax allows the defining of patterns spanning more than one line
or record. When the metacharacters +, *,or 2 appear at the end of a record, preceded by
a tab character, they are record-repetition operators and pertain to the number of records,
rather than the number of repetitions of the expression within a record. For example, the

Page 505

regexp (6) V Regular Expression Reference V

letter ‘A’ followed by a tab, followed by + means one or more records containing the letter
‘A’. (This syntax is only available with the Humdrum pattern command.)

COMMANDS

A number of Humdrum commands make use of regular expression syntax, including correl,
fields, fill, hint, mint, num, patt, pattern, recode, regexp, rend, scramble, xdelta, yank,
and ydelta.

In addition, the following UNIX commands make use of regular expression syntax:

awk pattern-action language

ed line-oriented text editor

ex text editor

expr shell expression evaluator
grep pattern-match command

gres pattern substitution command

pg interactive text display
sed stream editor
vi interactive full-screen text editor

UNIX commands employing regular expressions.

SEE ALSO

awk (UNIX), ed (UNIX), egrep (UNIX), ex (UNIX), expr (UNIX), extract (4), fields (4),
grep (UNIX), gres (UNIX), humsed (4), patt (4), pattern (4), pg (UNIX), recode (4), rend
(4), sed (UNIX), vi (UNIX), xdelta (4), yank (4), ydelta (4)

