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Abstract 
The question of how tonal structures in music are perceived and represented by the 
human mind has been approached by multiple disciplines, primarily music theory 
and cognitive psychology, and more recently, neuroscience. A parsimonious model 
of tonal space as the surface of a torus has emerged from various types of theoretical 
considerations and empirical data. Here I provide a brief overview of different vari-
ants of a very data-driven approach to modeling tonal space based on self-organizing 
maps (SOMs), focusing primarily on an ecologically inspired model (Leman and Car-
reras 1997) that allows one to project any desired auditory stimulus to the toroidal 
surface. I illustrate this with examples of the tonal trajectories charted by short chord 
progressions. 
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3.1 Recent Neuroscientific Research Related to Tonality 
The past fifteen years have seen a rapid increase in the number of published studies 
examining various facets of music perception and production from a neuroscience 
perspective (Peretz and Zatorre 2003; Peretz and Zatorre 2005). What might this rush 
to uncover the neural underpinnings of music reveal about the way in which music 
is perceived? 

Considerable effort has been devoted to the basic idea that the brains of musicians 
and non-musicians alike support musical knowledge, especially that of tonal struc-
tures and contexts. Notes and chords that are considered unlikely to occur in a 
particular harmonic or melodic context are readily perceived as deviant events. They 
elicit brain responses that are domain-general markers of expectancy violations 
(Besson and Macar 1987; Janata 1995; Patel 1998; Koelsch, Gunter et al. 2000). 

In such studies, basic music theory has constrained the rather simple stimuli that 
have been used. However, as the neuroscience community moves increasingly to-
ward using more natural musical stimuli, the need arises for means of modeling 
important underlying dimensions of musical pieces, such as tonality, without having 
to resort to painstaking and perhaps even controversial analyses of the pieces’ har-
monic structure. At the same time, such efforts, if they take into account known 
neural, perceptual, and cognitive constraints of the human brain, might prove useful 
to music theorists and musicologists (Huron 2006). 

The topic of tonality in western tonal music is one that has been approached from 
theoretical, cognitive, computational, and neuroscientific perspectives. Accordingly, 
it provides one with an opportunity to illustrate how these different approaches can 
inform each other and perhaps combine to create an understanding of how tonal 
spaces play themselves out in the minds of listeners. I emphasize the minds of the lis-
teners because the average person who finds pleasure in listening to any one of the 
many genres of Western tonal music is unencumbered by theories of how either mu-
sic or the brain works. 

The affective responses of a listener are shaped by the mental facilities that the lis-
tener uses to parse and organize the music they hear. These mainly include attention 
and various forms of memory, mental abilities that place limits on the bits of infor-
mation that can be held in mind and associated with one another. 

3.2 Tonal Space in Time 
When thinking about the way in which we perceive and react to music, it is impor-
tant to consider the timescales over which we do so, and the degree to which such 
limits are imposed by restricted attentional and mnemonic capacities of our brains. 
For example, estimates of the amount of time that auditory information is held in 
sensory memory duration range from 2–6 seconds (Treisman 1964; Lu, Williamson et 
al. 1992). This limit parallels the limits observed on grouping of events into perceptu-
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ally coherent rhythmic patterns (Krumhansl 2000), and it coincides with observations 
that moment-to-moment tension ratings of a piece of music are shaped by local 
rather than global harmonic considerations (Bigand and Parncutt 1999). 

Emotional appraisals of and physiological responses to excerpts of music unfold over 
similarly short timescales (Schubert 2004; Bigand, Vieillard et al. 2005; Koelsch, Fritz 
et al. 2006; Korhonen, Clausi et al. 2006; Steinbeis, Koelsch et al. 2006). While music-
theoretical models of how tonal structures manifest themselves in human minds 
need not be concerned with details of how information is maintained over time by 
the brain, physiologically inspired models of music processing do have to take such 
information into account. 

3.3 Geometries of Tonal Space 
One property of tonal space that independent methods converge on is its toroidal 
shape (Krumhansl 1990; Leman and Carreras 1997; Lerdahl 2001; Burgoyne and Saul 
2005). Superficially, the space takes form when the major and minor keys are ar-
ranged on the surface of the torus in a way that preserves their distance relationships 
to each other.  

Important harmonic relationships such as the Circle of Fifths are evident within this 
organization, providing the toroidal model with face validity. However, a question 
arises when one considers the notion of “distance” between locations of keys on the 
torus: what are appropriate distance metrics? It is on this point that different disci-
plines diverge.  

Music-theoretic and mathematic models may define distance relationships along 
various constructs such as the circle of fifths, circle of thirds, chroma circle, and other 
tonal/chordal relationships that seem salient (Krumhansl 1990; Lerdahl 2001). Dis-
tance relationships can also be defined in terms of psychological variables such as 
ratings of relatedness between a tonal context and probe events (Krumhansl, 1990). 
Finally, distance relationships can be based on the statistics of pitch-class distribu-
tions in key-defining musical material. Such comparisons underlie the self-
organizing-map (SOM) approaches that I summarize below. These different ap-
proaches to defining distances in tonal space are not mutually exclusive. They all 
give rise to a toroidal model, and they have informed each other in various ways. 

3.4 Self-Organizing Maps (SOMs) 
Perhaps the main benefit of the SOM approach is that it allows one to uncover struc-
ture in a source of data without making assumptions about the relationships among 
elements in the source data. The method is agnostic with regard to music theory. In-
stead, the strong theoretical premise is that nervous systems learn to identify 
recurring patterns of sensory input, i.e. that they are sensitive to the statistics of their 
environments. Thus, because segments of music that are considered to be in G major 
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will have very similar pitch-class distributions, elements in a neural network can be 
trained to recognize when that pitch-class distribution occurs on its inputs. The char-
acteristic mapping of keys comes about because the learning algorithm adjusts the 
strengths (weights) of the connections between the input elements and output-layer 
elements within a neighborhood region, causing similar distributions across elements 
on the input to activate similar regions on the output surface. Overall, the SOM ap-
proach treats the listener as a statistical probability extractor. 

3.4.1 Probe-Tone SOMs 
Three types of SOM models of tonality have been developed. One starts with probe-
tone profiles. A probe-tone profile for a key reflects average subjective ratings of how 
well each of the twelve pitch-classes is perceived to fit into that key (Krumhansl and 
Kessler 1982; Krumhansl 1990). Probe-tone profiles are formed for each major and 
minor key by shifting the canonical major and minor profiles across the twelve pitch-
classes. 

The full complement of profiles then serves as input to a SOM in which the output 
surface has a toroidal topology (Toiviainen and Krumhansl 2003). During training, 
the SOMs input patterns to locations on the output surface based on the similarities 
of the input vectors, such that similar input patterns result in spatially similar output 
patterns.  

Not surprisingly, the resulting spatial arrangement of keys is very similar to the mul-
ti-dimensional scaling solutions of the probe-tone rating data that gave rise to the key 
profiles in the first place. One advantage of this SOM approach is that arbitrary 
probe-tone profiles can be presented to the trained network. Thus, a probe-tone pro-
file that is obtained during a modulating segment in a piece of music can be 
projected to the toroidal surface to ask whether multiple key regions are activated. 

3.4.2 Pitch-Class SOMs 
Instead of using subjective ratings as input to an SOM, it is also possible to use dis-
tributions of pitch-class information that are accumulated via different means. In one 
method that also used a 12-element pitch-class vector as input, different chords were 
presented to a hierarchical SOM in which the input layer projected to an intermediate 
chord layer which projected, in turn, to a key layer (Tillmann, Bharucha et al. 2000). 
The map self-organized into the circle of fifths. When confronted with stimulus ma-
terials from several studies of perceived tonality, the model successfully predicted 
many of the results. 

3.4.3 Acoustic Waveform SOMs 
Finally, SOMs converge on the toroidal structure in models that start with the acous-
tic waveform as input (Leman and Carreras 1997; Janata, Birk et al. 2002). The 
modeling approach adopted by Leman and Carreras (1997), available as the IPEM 
toolbox for Matlab (http://www.ipem.ugent.be/Toolbox), uses models of known physio-



 

JANATA: NAVIGATING TONAL SPACE 43 

logical mechanisms for defining transformations of the auditory input and subse-
quent representations. 

 

Figure 3.1.  Examples of the representations of auditory signals at different stages of 
processing as modeled using the IPEM Toolbox. (a) An auditory nerve image shows the firing 
pattern of different auditory nerve fibers/channels (y-axis) across time that arises at the 
output of a cochlear model. Note the differences in temporal fine structure across the different 
channels. Here, the responses to the six 200 ms notes of the first arpeggiated chord in a 
melody rendered with a synthetic clarinet timbre are shown. (b) Periodicity pitch images 
represent the time-varying pitch content of the signal. Each of the 24 distinct vertical 
columns shows the steady state portion of a single 200 ms note. The vertical spacing between 
the darker bars corresponds to the period of the fundamental frequency. Thus, the initial four 
notes are ascending in pitch. (c) An example of short time-scale pitch distribution estimates 
obtained by performing leaky integration (0.2 s decay to half maximum amplitude) over the 
periodicity pitch image shown in b. While local information about individual notes is still 
visible, the representation of repeating periods is enhanced. In this case, the four time 
segments that can be discerned as changes in the pattern of prominent bands (white arrows) 
correspond to the first four arpeggiated chords in the harmonic sequence of the melody. Each 
arpeggiated chord consisted of 6 notes. (d) In this example, leaky integration of the periodicity 
pitch image with a longer time constant (2 s) gives rise to a representation in which the pitch 
content spanning multiple harmonic transitions is captured at any given moment in time. 
This representation is taken to reflect the time-varying tonal context of the auditory input. 
The vector of periodicities at each time point serves as a single training vector to a SOM. 
Thus, single output units in the SOM are associated with preferred periodicity vectors. 
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The initial processing of the sound files mimics the transformation from an acoustic 
to neural signal in the cochlea (Vanimmerseel and Martens 1992). The result is an 
“auditory nerve image” that contains the time-varying firing patterns that might be 
observed across auditory nerve fibers corresponding to different critical bands (Fig-
ure 3.1a). 

Periodicities in the firing patterns are estimated using autocorrelation and pooled 
across channels in the auditory nerve image resulting in “periodicity pitch images” 
(Figure 3.1b) (Langner 1992; Cariani 1999). 

Note that in these images a single pitch is represented as a series of evenly spaced 
peaks at different time lags along the y-axis, rather than as a single peak at a single 
period value. The periodicity pitch images are then smoothed using leaky integration 
and a time-constant of choice to provide running periodicity pitch distribution esti-
mates (Figure 3.1c and 3.1d). 

Momentary snapshots (single time-windows) of these integrated periodicity patterns 
then serve as inputs to a SOM algorithm (http://www.cis.hut.fi/projects/somtoolbox/), just 
as probe-tone profiles or pitch-class vector representations of chords served as input 
in the examples mentioned above. 

3.4 Perception of Tonal Regions in a Modulating Melody 
Regions of the SOM can be associated with specific keys by presenting the SOM with 
input vectors that are considered to be key-defining and finding the region of maxi-
mal activation in the SOM. The unfolded labeled tori in Figure 3.2 illustrate the 
arrangement of key regions in an SOM that was trained with a short (c. 8-minute) 
melody that modulated through all of the 24 major and minor keys (Janata, Birk et al. 
2003). 

As mentioned above, the consequence of the SOM training algorithm is that similar 
input patterns project to neighboring regions on the output surface. Thus, changing 
pitch distributions on the input leads to reshaping and/or displacement of the activa-
tion peak on the toroidal surface. Figure 3.2 illustrates how several patterns of 
harmonic motion are manifested on the surface. In this case, a series of stimuli in B 
major were projected onto the torus that was trained with the modulating melody 
mentioned above. In other words, the melody served as the basis for defining key re-
gions and was then probed using a set of novel stimuli in B major that included the 
tonic triad, ascending diatonic scale, and four different chord progressions. Both 
short-term period distributions corresponding to local tonal chord contexts (Fig. 1c) 
and longer-term period distributions that correspond to more extended tonal con-
texts (Fig. 1d) were projected onto the SOM to give a sense of the activation dynamics 
at these different timescales. For example, a short time-constant of 0.2 s causes the 
individual notes of the ascending B major scale to activate separate spots on the to-
rus,  whereas a longer  time  constant  causes  the  center  of  mass of  the activation to  
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Figure 3.2.  Activation trajectories on the toroidal surface. Each panel depicts the surface of a 
SOM on a flattened torus. The left and right edges are contiguous as are the bottom and top 
edges. The SOM was trained using a melody that systematically modulates through all 24 
major and minor keys (Janata, 2003). Key region labels were assigned to locations on the 
surface that showed the strongest activation when presented with segments of the melody that 
corresponded to each key (excluding modulation regions). Six musical stimuli in B Major (the 
tonic triad, the ascending and descending diatonic scale, and four chord progressions shown 
in Figure 3.3) were rendered using the Grand Piano patch on the Apple Software Synth,  
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processed through the auditory model, and projected onto the SOM. The time-varying 
activation patterns are shown using a single contour line approximately every 500 ms.  The 
contour line circumscribes the extent of activation that is ≥95% of the maximum activation at 
that time point. The grayscale value is used to represent elapsed time from the onset of the 
stimulus. For each stimulus, the panel on the left shows the projection of the tonal context 
images that arose from leaky integration with a short time constant, and the panel on the 
right corresponds to the projection of tonal context images calculated using a longer time 
constant. Please see the online version for a color version of this figure. 
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Figure 3.3.  Musical stimuli (ascending and descending B Major scale, four sets of chord 
progressions) used to generate Figure 3.2 (b)-(f).  A quarter note = 120. 
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dwell in the B-major region. The chord progression examples in Figure 2 further il-
lustrate that although a region of the torus in the vicinity of the B-major label is 
activated in all cases, the activation is biased toward different key regions, and the 
biasing depends on the harmonic structure of the preceding sequence. 

3.5 Discussion 
The observations reported here echo earlier results of a behavioral experiment that 
mapped the developing and changing sense of key on the surface of a torus 
(Krumhansl and Kessler 1982). Specifically, each chord in a modulating or non-
modulating sequence resulted in a displacement of the perceived momentary loca-
tion on the surface of the torus, supporting the notion that perceived locations in 
tonal space are strongly influenced by local information and are dynamic. The simu-
lations shown in Figure 2 indicate that the motility of the activation peak on the torus 
is governed by the time-constant that is used to shape the time-varying pitch distri-
butions, with shorter time-constants resulting in larger displacements from one event 
to the next. Therefore, it is conceivable that, by matching the perceived trajectories 
against multiple simulated trajectories in which the time constants have been varied, 
one might estimate the listener’s own time constant for integrating tonal information. 

There is a considerable amount of converging behavioral evidence that listeners’ 
journeys through tonal space are influenced strongly by local tonal information 
(Krumhansl and Kessler 1982; Tillmann, Bigand et al. 1998; Bigand and Parncutt 
1999; Leman 2000), and such local information appears to be well represented in the 
time-varying activation patterns of tonal space represented on a toroidal surface. Al-
though unconstrained by music theory, different SOM approaches, constrained by 
considerations of psychological and neural processes, have converged on similar rep-
resentations of tonal space onto which subjects’ percepts (Toiviainen and Krumhansl 
2003) or arbitrary musical stimuli can be projected with relative ease (Leman and 
Carreras 1997; Janata, Birk et al. 2002; Toiviainen 2005). While the degree to which 
the current toroidal models will be successful in capturing tonal relationships that 
span longer timeframes (Lerdahl and Jackendoff 1983; Lerdahl 2001) remains un-
clear, they are likely to enjoy some utility in identifying brain processes that respond 
to the movement of music on the timescale captured by this type of model of tonal 
space (Janata, Birk et al. 2002). 
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